CD103 (αE integrin) is an important dendritic cell (DC) marker that characterizes functionally distinct DC subsets in mice and humans. However, the mechanism by which CD103 expression is regulated in human DCs and the role of CD103 for DC function are not very well understood. Here, we show that retinoic acid (RA) treatment of human monocyte-derived DCs (MoDCs) increased the ability of the DCs to synthesize RA and induced MoDC expression of CD103 and β7 at the mRNA and protein level. In contrast, RA was unable to induce the expression of CD103 in primary human DCs isolated from the gastric mucosa. Inhibition of TGF-β signaling in MoDCs down-regulated RA-induced CD103 expression, indicating that TGF-β-dependent pathways contribute to the induction of CD103. Conversely, when RA-treated MoDCs were stimulated with live , commensal bacteria, LPS, or a TLR2 agonist, the RA-induced up-regulation of CD103 and β7 integrin expression was completely abrogated. To determine whether CD103 expression impacts DC priming of CD4 T cells, we next investigated the ability of CD103 and CD103 DCs to induce mucosal homing and T cell proliferation. Surprisingly, RA treatment of DCs enhanced both α4β7 expression and proliferation in cocultured T cells, but no difference was seen between RA-treated CD103 and CD103 DCs. In summary, our data demonstrate that RA, bacterial products, and the tissue environment all contribute to the regulation of CD103 on human DCs and that DC induction of mucosal homing in T cells is RA dependent but not CD103 dependent.
Severe COVID-19 has been associated with T cell lymphopenia 1,2, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from SARS-CoV-2 infections we studied rhesus macaques that were depleted of either CD4+, CD8+ or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to controls. The T cell-depleted groups developed virus-neutralizing antibody responses and also class-switched to IgG. When re-infected six weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ or CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory or protection from a second infection.
Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.