In early human pregnancy, uterine decidual NK cells (dNK) are abundant and considered as cytokine producers but poorly cytotoxic despite their cytolytic granule content, suggesting a negative control of this latter effector function. To investigate the basis of this control, we examined the relative contribution to the cytotoxic function of different activating receptors expressed by dNK. Using a multicolor flow cytometry analysis, we found that freshly isolated dNK exhibit a unique repertoire of activating and inhibitory receptors, identical among all the donors tested. We then demonstrated that in fresh dNK, mAb-specific engagement of NKp46-, and to a lesser extent NKG2C-, but not NKp30-activating receptors induced intracellular calcium mobilization, perforin polarization, granule exocytosis and efficient target cell lysis. NKp46-mediated cytotoxicity is coactivated by CD2 but dramatically blocked by NKG2A coengagement, indicating that the dNK cytotoxic potential could be tightly controlled in vivo. We finally found that in dNK, mAb-specific engagement of NKp30, but not NKp46, triggered the production of IFN-γ, TNF-α, MIP-1α, MIP-1β, and GM-CSF proinflammatory molecules. These data demonstrate a differential, controlled role of NKp46- and NKp30-activating receptors expressed by dNK that could be critical for the outcome of pregnancy and the killing of uterine cells infected by pathogens.
Circulating human natural killer (NK) lymphocytes have been functionally defined by their ability to exert cytotoxic activity against MHC class I-negative target cell lines, including K562. Therefore, it was proposed that NK cells recognized the ''missing self.'' We show here that the Ig-like CD160 receptor expressed by circulating CD56 dim؉ NK cells or IL-2-deprived NK cell lines is mainly involved in their cytotoxic activity against K562 target cells. Further, we report that HLA-C molecules that are constitutively expressed by K562 trigger NK cell lysis through CD160 receptor engagement. In addition, we demonstrate, with recombinant soluble HLA-Cw3 and CD160 proteins, direct interaction of these molecules. We also find that CD158b inhibitory receptors partially interfere with CD160-mediated cytotoxicity, whereas CD94͞ CD159a and CD85j have no effect on engagement with their respective ligands. Thus, CD160͞HLA-C interaction constitutes a unique pathway to trigger NK cell cytotoxic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.