Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased β2-adrenoceptor/β-arrestin signaling pathway in endothelial cells, which ultimately traps β-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by β-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas β-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of β-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.
The Gram-negative bacterium Neisseria meningitidis asymptomatically colonizes the throat of 10 to 30% of the human population, but throat colonization can also act as the port of entry to the blood (septicemia) and then the brain (meningitis). Colonization is mediated by filamentous organelles referred to as type IV pili, which allow the formation of bacterial aggregates associated with host cells. We found that proliferation of N. meningitidis in contact with host cells increased the transcription of a bacterial gene encoding a transferase that adds phosphoglycerol onto type IV pili. This unusual posttranslational modification specifically released type IV pili-dependent contacts between bacteria. In turn, this regulated detachment process allowed propagation of the bacterium to new colonization sites and also migration across the epithelium, a prerequisite for dissemination and invasive disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.