The addition of cladribine to standard induction chemotherapy has no impact on the incidence and spectrum of infectious complications in newly diagnosed AML patients.
A significant body of evidence suggests that treatment with naturally occurring CD4+CD25+ T regulatory cells (Tregs) is an appropriate therapy for graft-versus-host disease (GvHD). GvHD is a major complication of bone marrow transplantation in which the transplanted immune system recognizes recipient tissues as a non-self and destroys them. In many cases, this condition significantly deteriorates the quality of life of the affected patients. It is also one of the most important causes of death after bone marrow transplantation. Tregs constitute a population responsible for dominant tolerance to self-tissues in the immune system. These cells prevent autoimmune and allergic reactions and decrease the risk of rejection of allotransplants. For these reasons, Tregs are considered as a cellular drug in GvHD. The results of the first clinical trials with these cells are already available. In this review we present important experimental facts which led to the clinical use of Tregs. We then critically evaluate specific requirements for Treg therapy in GvHD and therapies with Tregs currently under clinical investigation, including our experience and future perspectives on this kind of cellular treatment.
Over the past four decades, remarkable progress has been made in the treatment and prognosis of multiple myeloma (MM), although it remains an incurable disease. Chemotherapy resistance is a major hurdle for treatment efficacy. Drug resistance can be innate and so driven by genes involved in the drug metabolism pathways. We performed an association study of 71 germline variants within the major genes in those pathways (ABCB1, ABCC2, ABCG2, and their regulators NR1I2/PXR and NR1I3/CAR) in the International Multiple Myeloma rESEarch (IMMEnSE) consortium, consisting of 1365 MM cases with survival information recruited in 5 European countries. Two of the SNPs showed a significant association with the survival of MM patients, namely rs2235013, located in ABCB1 [Hazard ratio (HR) = 1·52, 95% confidence interval (CI) = 1·18-1·95, P = 0·00087], and rs4148388, located in ABCC2 (HR = 2·15, 95% CI = 1·44-3·22, P = 0·0001). ABCC2 plays an essential role in transporting various anticancer drugs, including several used against MM, out of the cell. In silico analyses predict that the variant alleles of four SNPs in linkage disequilibrium with ABCC2-rs4148388 are associated with increased gene expression. Overexpression of ABCC2 increases drug clearance and therefore may induce drug resistance mechanisms. In conclusion, we found a promising association between ABCC2-rs4148388 and MM outcome that is supported by a plausible biological explanation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.