Lymphangioleiomyomatosis (LAM) is an often fatal disease primarily affecting young women in which tuberin (TSC2)-null cells metastasize to the lungs. The mechanisms underlying the striking female predominance of LAM are unknown. We report here that 17--estradiol (E2) causes a 3-to 5-fold increase in pulmonary metastases in male and female mice, respectively, and a striking increase in circulating tumor cells in mice bearing tuberin-null xenograft tumors. E 2-induced metastasis is associated with activation of p42/44 MAPK and is completely inhibited by treatment with the MEK1/2 inhibitor, CI-1040. In vitro, E 2 inhibits anoikis of tuberin-null cells. Finally, using a bioluminescence approach, we found that E 2 enhances the survival and lung colonization of intravenously injected tuberin-null cells by 3-fold, which is blocked by treatment with CI-1040. Taken together these results reveal a new model for LAM pathogenesis in which activation of MEKdependent pathways by E 2 leads to pulmonary metastasis via enhanced survival of detached tuberin-null cells.L AM, the pulmonary manifestation of tuberous sclerosis complex (TSC), affects women almost exclusively (1). LAM affects 30Ϫ40% of women with TSC (2, 3). In a Mayo Clinic series, LAM was the third most frequent cause of TSC-related death, after renal disease and brain tumors (4). LAM can also occur in women who do not have germline mutations in TSC1 or TSC2 (sporadic LAM). LAM cells from both TSC-LAM and sporadic LAM carry inactivating mutations in both alleles of the TSC1 or TSC2 genes (5). The protein products of TSC1 and TSC2, hamartin and tuberin, respectively, form heterodimers (6, 7) that inhibit the small GTPase Ras homologue enriched in brain (Rheb), via tuberin's highly conserved GTPase activating domain. In its active form, Rheb activates the mammalian target of rapamycin (mTOR) complex 1 (TORC1), which is a key regulator of protein translation, cell size, and cell proliferation (8). Evidence of TORC1 activation, including hyperphosphorylation of ribosomal protein S6, has been observed in tumor specimens from TSC patients and LAM patients (9-11). Independent of its activation of mTOR, Rheb inhibits the activity of B-Raf and C-Raf/Raf-1 kinase, resulting in reduced phosphorylation of p42/44 MAPK (12-14), but the impact of the Raf/MEK/ MAPK pathway on disease pathogenesis is undefined.LAM is characterized pathologically by widespread proliferation of abnormal smooth muscle cells and by cystic changes within the lung parenchyma (1). About 60% of women with the sporadic form of LAM also have renal angiomyolipomas. The presence of TSC2 mutations in LAM cells and renal angiomyolipoma cells from women with sporadic LAM, but not in normal tissues, has led to the hypothesis that LAM cells spread to the lungs via a metastatic mechanism, despite the fact that LAM cells have a histologically benign appearance (15,16). Genetic and fluorescent in situ hybridization analyses of recurrent LAM after lung transplantation support this benign metastatic model (16).The female...
The impact of complement on cancer metastasis has not been well studied. In this report, we demonstrate in a preclinical mouse model of breast cancer that the complement anaphylatoxin C5a receptor (C5aR)
Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome characterized by benign tumors in multiple organs, including the brain and kidney. TSC-associated tumors exhibit hyperactivation of mammalian target of rapamycin complex 1 (mTORC1), a direct inhibitor of autophagy. Autophagy can either promote or inhibit tumorigenesis, depending on the cellular context. The role of autophagy in the pathogenesis and treatment of the multisystem manifestations of TSC is unknown. We found that the combination of mTORC1 and autophagy inhibition was more effective than either treatment alone in inhibiting the survival of tuberin (TSC2)-null cells, growth of TSC2-null xenograft tumors, and development of spontaneous renal tumors in Tsc2 +/− mice. Down-regulation of Atg5 induced extensive central necrosis in TSC2-null xenograft tumors, and loss of one allele of Beclin1 almost completely blocked macroscopic renal tumor formation in Tsc2 +/− mice. Surprisingly, given the finding that lowering autophagy blocks TSC tumorigenesis, genetic down-regulation of p62/sequestosome 1 (SQSTM1), the autophagy substrate that accumulates in TSC tumors as a consequence of low autophagy levels, strongly inhibited the growth of TSC2-null xenograft tumors. These data demonstrate that autophagy is a critical component of TSC tumorigenesis, suggest that mTORC1 inhibitors may have autophagy-dependent prosurvival effects in TSC, and reveal two distinct therapeutic targets for TSC: autophagy and the autophagy target p62/SQSTM1.utophagy is increasingly recognized to play a critical role in tumor development and cancer therapy (1, 2). In autophagy, cells undergo membrane rearrangement to sequester a portion of cytoplasm, organelles, and intracellular proteins for delivery to a degradative lysosome for recycling. In situations of bioenergetic stress, autophagy promotes the survival of established tumors by supplying metabolic precursors; however, excessive autophagy has been associated with cell death (3, 4). Inhibition of autophagy using chloroquine (CQ), which blocks lysosomeautophagosome fusion and lysosomal protein degradation (5), suppresses the growth of Myc-induced lymphomas (6). In other situations, however, inhibition of autophagy promotes tumorigenesis; for example, haploinsufficinecy for the autophagy gene Beclin1 promotes tumorigenesis in mouse models (7,8), and allelic loss of Beclin1 is associated with human breast, ovarian, and prostate cancers (1).Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome caused by germline mutations in the TSC1 or TSC2 genes (9). Patients with TSC have multisystem manifestations, which can include neurologic disease (i.e., seizures, mental retardation, and autism), benign tumors in multiple organs, and pulmonary lymphangioleiomyomatosis (LAM).The TSC1-TSC2 protein complex acts as a cellular sensor, integrating signals from growth factors (10), hypoxia (11, 12), ATP availability (13), IκB kinase (IKK) (14), and the cell cycle (15) through direct phosphorylation by kinases ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.