A B S T R A C TBackgrounds: An ongoing outbreak of a novel coronavirus (2019-nCoV) pneumonia hit a major city in China, Wuhan, December 2019 and subsequently reached other provinces/regions of China and other countries. We present estimates of the basic reproduction number, R 0 , of 2019-nCoV in the early phase of the outbreak. Methods: Accounting for the impact of the variations in disease reporting rate, we modelled the epidemic curve of 2019-nCoV cases time series, in mainland China from January 10 to January 24, 2020, through the exponential growth. With the estimated intrinsic growth rate (g), we estimated R 0 by using the serial intervals (SI) of two other well-known coronavirus diseases, MERS and SARS, as approximations for the true unknown SI. Findings: The early outbreak data largely follows the exponential growth. We estimated that the mean R 0 ranges from 2.24 (95%CI: 1.96-2.55) to 3.58 (95%CI: 2.89-4.39) associated with 8-fold to 2-fold increase in the reporting rate. We demonstrated that changes in reporting rate substantially affect estimates of R 0 . Conclusion: The mean estimate of R 0 for the 2019-nCoV ranges from 2.24 to 3.58, and is significantly larger than 1. Our findings indicate the potential of 2019-nCoV to cause outbreaks.
has claimed more than 2600 lives as of 24 February 2020 and posed a huge threat to global public health. The Chinese government has implemented control measures including setting up special hospitals and travel restriction to mitigate the spread. We propose conceptual models for the COVID-19 outbreak in Wuhan with the consideration of individual behavioural reaction and governmental actions, e.g., holiday extension, travel restriction, hospitalisation and quarantine. We employe the estimates of these two key components from the 1918 influenza pandemic in London, United Kingdom, incorporated zoonotic introductions and the emigration, and then compute future trends and the reporting ratio. The model is concise in structure, and it successfully captures the course of the COVID-19 outbreak, and thus sheds light on understanding the trends of the outbreak.
Backgrounds: An ongoing outbreak of a novel coronavirus (2019-nCoV) pneumonia hit a major city of China, Wuhan, December 2019 and subsequently reached other provinces/regions of China and countries. We present estimates of the basic reproduction number, R0, of 2019-nCoV in the early phase of the outbreak.
Methods:Accounting for the impact of the variations in disease reporting rate, we modelled the epidemic curve of 2019-nCoV cases time series, in mainland China from January 10 to January 24, 2020, through the exponential growth. With the estimated intrinsic growth rate (γ), we estimated R0 by using the serial intervals (SI) of two other well-known coronavirus diseases, MERS and SARS, as approximations for the true unknown SI.
Findings:The early outbreak data largely follows the exponential growth. We estimated that the mean R0 ranges from 2.24 (95%CI: 1.96-2.55) to 3.58 (95%CI: 2.89-4.39) associated with 8-fold to 2-fold increase in the reporting rate. We demonstrated that changes in reporting rate substantially affect estimates of R0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.