We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types T6, six of which have been announced earlier by Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 μm (W2) magnitude versus spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four of our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541−2250, is the closest at 2.8 +1.3 −0.6 pc; if this 2.8 pc value persists after continued monitoring, WISE 1541−2250 will become the seventh closest stellar system to the Sun. Another 10 objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of ∼4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from the Spitzer/Infrared Array Camera allow us to calculate proper motions and tangential velocities for roughly one-half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of these objects and discuss constraints on both the functional form of the mass function and the low-mass limit of star formation.
We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7±1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two young stellar objects and two active galactic nuclei. The substantial increase in the number of known late-type T dwarfs provides a population that will be used to test models of cold atmospheres and star formation. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.Subject headings: infrared: stars -stars: low-mass, brown dwarfs -binaries: general -Galaxies: active sources, which comprise approximately one-third of the present sample. Combined with the 89 T dwarfs reported by Kirkpatrick et al. (2011), WISE has more than tripled the number of brown dwarfs with spectral types later than T5. In §2 we discuss our photometric selection criteria and present WISE All-Sky photometry for all the objects in Kirkpatrick et al. (2011) and the new brown dwarfs presented here. In §3 we present our follow-up photometry and spectroscopy for the new T dwarfs and a few objects in the literature. Spectral classification, indices, and further analysis are presented in §4, along with comments on noteworthy objects. In §5 we present a dedicated discussion on the re-emergence of clouds in late-type T dwarfs. Interlopers, that mimic brown dwarfs in WISE color space, are discussed in §6. Our results are summarized in §7. In the Appendix we discuss our motivation for redefining spectral indices as the median flux over a wavelength range rather than the integrated flux. Candidate SelectionThe W...
We report individual dynamical masses for the brown dwarfs ε Indi B and C, which have spectral types of T1.5 and T6, respectively, measured from astrometric orbit mapping. Our measurements are based on a joint analysis of astrometric data from the Carnegie Astrometric Planet Search and the Cerro Tololo Inter-American Observatory Parallax Investigation as well as archival high resolution imaging, and use a Markov Chain Monte Carlo method. We find dynamical masses of 75.0±0.82 M Jup for the T1.5 B component and 70.1±0.68 M Jup for the T6 C component. These masses are surprisingly high for substellar objects and challenge our understanding of substellar structure and evolution. We discuss several evolutionary scenarios proposed in the literature and find that while none of them can provide conclusive explanations for the high substellar masses, evolutionary models incorporating lower atmospheric opacities come closer to approximating our results. We discuss the details of our astrometric model, its algorithm implementation, and how we determine parameter values via Markov Chain Monte Carlo Bayesian inference.
We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette (FIRE) reveal strong H 2 O and CH 4 absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon & Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018−7423 exhibits a suppressed K-band peak and blue spectrophotometric J − K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y -band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.
We have investigated the brown dwarf (BD) and stellar disc fractions in the Upper Scorpius (USco) OB association and compared them with several other young regions. We have compiled the most complete sample of all spectroscopically confirmed BDs in USco and have made use of the Wide‐field Infrared Survey Explorer (WISE) catalogue to identify the disc candidates. We report on the discovery of 12 new BD discs in USco, with spectral types between M6 and M8.5. The WISE colours for the new discs are similar to the primordial (transition) discs earlier detected in USco. Combining with previous surveys, we find the lowest inner disc fractions (∼20–25 per cent) for a wide range in stellar masses (∼0.01–4.0 M⊙) in the USco association. The low disc fractions for high‐mass stars in USco (and the other clusters) are consistent with an evolutionary decline in inner disc frequency with age. However, BD disc fractions are higher than those for the stars in 1–3 Myr clusters, but very low in the ∼5 Myr old USco. Also, primordial BD discs are still visible in the ∼10 Myr old TW Hydrae association, whereas the higher mass stars have all transitioned to the debris stage by this age. The disc frequencies for BDs and low‐mass stars do not show any dependence on the stellar density or the BD/star number ratio in a cluster. We also find no convincing evidence that any of the well‐known disc dispersal mechanisms for stars are active in BD discs. We suggest that the large differences in the observed BD disc fractions between regions may well be due to different BD formation mechanisms and therefore different initial disc fractions/properties. We also present a WISE spectral energy distribution classification scheme, based on the Ks and WISE bands of 3.4–12 μm. We have determined certain thresholds in the WISE spectral slope versus spectral type diagrams to distinguish between the red population of Class I/II systems and the Class III sequence. We have found the WISE [3.4] − [12] colour to provide the best distinction between the photospheric and the disc population. Our work includes a comparison of the sensitivities of WISE and Spitzer disc surveys. We estimate that WISE can be incomplete for discs at spectral type later than M8 in distant clusters such as SOri. WISE should be able to recover the M8–M9 discs in the nearby young clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.