SUMMARY: Cyclin-Dependent Kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50=5nM) that has broad anti-cancer activity in-vitro and is effective in in-vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.
SUMMARY Small molecule BET bromodomain inhibitors (BETi) are actively being pursued in clinical trials for the treatment of a variety of cancers, however, the mechanisms of resistance to BETi remain poorly understood. Using a mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted BETi treatment in a panel of BRD4-dependent ovarian carcinoma (OC) cell lines. Despite initial inhibitory effects of BETi, OC cells acquired resistance following sustained treatment with the BETi, JQ1. Through application of Multiplexed Inhibitor Beads (MIBs) and mass spectrometry, we demonstrate that BETi resistance is mediated by adaptive kinome reprogramming, where activation of compensatory pro-survival kinase networks overcomes BET protein inhibition. Furthermore, drug combinations blocking these kinases may prevent or delay the development of drug resistance and enhance the efficacy of BETi therapy.
The purpose of this study was to characterize a new chemical entity, desvenlafaxine succinate (DVS). DVS is a novel salt form of the isolated major active metabolite of venlafaxine. Competitive radioligand binding assays were performed using cells expressing either the human serotonin (5-HT) transporter (hSERT) or norepinephrine (NE) transporter (hNET) with K i values for DVS of 40.2 Ϯ 1.6 and 558.4 Ϯ 121.6 nM, respectively. DVS showed weak binding affinity (62% inhibition at 100 M) at the human dopamine (DA) transporter. Inhibition of , examined at a large number of nontransporter targets, showed no significant activity. DVS (30 mg/kg orally) rapidly penetrated the male rat brain and hypothalamus. DVS (30 mg/kg orally) significantly increased extracellular NE levels compared with baseline in the male rat hypothalamus but had no effect on DA levels using microdialysis. To mimic chronic selective serotonin reuptake inhibitor treatment and to block the inhibitory 5-HT 1A autoreceptors, a 5-hexanecarboxamide maleate salt (WAY-100635) (0.3 mg/kg s.c.), was administered with DVS (30 mg/kg orally). 5-HT increased 78% compared with baseline with no additional increase in NE or DA levels. In conclusion, DVS is a new 5-HT and NE reuptake inhibitor in vitro and in vivo that demonstrates good brain-to-plasma ratios, suggesting utility in a variety of central nervous system-related disorders.Biogenic amines such as serotonin (5-HT), norepinephrine (NE), and dopamine (DA) are neurotransmitters found in areas of the central nervous system (CNS) known to be important for regulation of cognitive function, mood, thermoregulation, pain sensation, sexual function, and various aspects of endocrine function related to homeostasis. Their synthesis is highly regulated, and long-term disturbance of the regulatory pathways for these neurotransmitters may lead to disruptions in overall health and quality of life. As with any specific mechanism that controls a physiological process, regulation of these neurotransmitters is a target of many pharmacological agents. Agents that have been developed to modulate these key neurotransmitters are well characterized and have provided evidence that regulation of these neurotransmitters affects physiological outcomes specific to each neurotransmitter. There are multiple means of regulating these neurotransmitters. One means is by inhibiting their presynaptic reuptake. Monoamine reuptake inhibitors work by binding to their respective transporter proteins located presynaptically. This binding interaction results in an increase in elimination time of the neurotransmitter cycle; thus, the extracellular concentration of the neurotransmitters increases in the synaptic cleft. This increase in neurotransmitter in the cleft allows for increased downstream cellular signaling (Blakely and Bauman, 2000). Serotonin and norepinephrine reuptake inhibitors (SNRIs) work by blocking the presynaptic reuptake of 5-HT and NE, resulting in an increased sustained level of both of these neurotransmitters. The 5-HT a...
Cryptococcosis is an infectious disease of global significance for which new therapies are needed. Repurposing previously developed drugs for new indications can expedite the translation of new therapies from bench to beside. Here, we characterized the anti-cryptococcal activity and antifungal mechanism of estrogen receptor antagonists related to the breast cancer drugs tamoxifen and toremifene. Tamoxifen and toremifene are fungicidal and synergize with fluconazole and amphotericin B in vitro. In a mouse model of disseminated cryptococcosis, tamoxifen at concentrations achievable in humans combines with fluconazole to decrease brain burden by ~1 log10. In addition, these drugs inhibit the growth of Cryptococcus neoformans within macrophages, a niche not accessible by current antifungal drugs. Toremifene and tamoxifen directly bind to the essential EF hand protein calmodulin, as determined by thermal shift assays with purified C. neoformans calmodulin (Cam1), prevent Cam1 from binding to its well-characterized substrate calcineurin (Cna1), and block Cna1 activation. In whole cells, toremifene and tamoxifen block the calcineurin-dependent nuclear localization of the transcription factor Crz1. A large-scale chemical genetic screen with a library of C. neoformans deletion mutants identified a second EF hand-containing protein, which we have named calmodulin-like protein 1 (CNAG_05655), as a potential target, and further analysis showed that toremifene directly binds Cml1 and modulates its ability to bind and activate Cna1. Importantly, tamoxifen analogs (idoxifene and methylene-idoxifene) with increased calmodulin antagonism display improved anti-cryptococcal activity, indicating that calmodulin inhibition can be used to guide a systematic optimization of the anti-cryptococcal activity of the triphenylethylene scaffold.
The presenilin containing ␥-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. ␥-Secretase catalyzes the final step in the generation of A 40 and A 42 peptides from APP. Amyloid -peptides (A peptides) aggregate to form neurotoxic oligomers, senile plaques, and congophilic angiopathy, some of the cardinal pathologies associated with Alzheimer's disease. Although inhibition of this protease acting on APP may result in potentially therapeutic reductions of neurotoxic A peptides, nonselective inhibition of the enzyme may cause severe adverse events as a result of impaired Notch receptor processing. Here, we report the preclinical pharmacological profile of GSI-953 (begacestat), a novel thiophene sulfonamide ␥-secretase inhibitor (GSI) that selectively inhibits cleavage of APP over Notch. This GSI inhibits A production with low nanomolar potency in cellular and cell-free assays of ␥-secretase function, and displaces a tritiated analog of GSI-953 from enriched ␥-secretase enzyme complexes with similar potency. Cellular assays of Notch cleavage reveal that this compound is approximately 16-fold selective for the inhibition of APP cleavage. In the human APP-overexpressing Tg2576 transgenic mouse, treatment with this orally active compound results in a robust reduction in brain, plasma, and cerebral spinal fluid A levels, and a reversal of contextual fear-conditioning deficits that are correlated with A load. In healthy human volunteers, oral administration of a single dose of GSI-953 produces dosedependent changes in plasma A levels, confirming pharmacodynamic activity of GSI-953 in humans.This research was supported by Wyeth Research. Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.