Background and Aims Nonalcoholic fatty liver disease (NAFLD) affects a quarter of the adult population. A significant subset of patients are lean, but their underlying pathophysiology is not well understood. Approach and Results We investigated the role of bile acids (BAs) and the gut microbiome in the pathogenesis of lean NAFLD. BA and fibroblast growth factor (FGF) 19 levels (a surrogate for intestinal farnesoid X receptor [FXR] activity), patatin‐like phospholipase domain containing 3 (PNPLA3), and transmembrane 6 superfamily member 2 (TM6SF2) variants, and gut microbiota profiles in lean and nonlean NAFLD were investigated in a cohort of Caucasian patients with biopsy‐proven NAFLD (n = 538), lean healthy controls (n = 30), and experimental murine models. Patients with lean NAFLD had a more favorable metabolic and histological profile compared with those with nonlean NAFLD (P < 0.05 for all). BA levels were significantly higher in NAFLD with advanced compared with earlier stages of liver fibrosis. Patients with lean NAFLD had higher serum secondary BA and FGF19 levels and reduced 7‐alpha‐hydroxy‐4‐cholesten‐3‐one (C4) levels (P < 0.05 for all). These differences were more profound in early compared with advanced stages of fibrosis (P < 0.05 for both). Lean patients demonstrated an altered gut microbiota profile. Similar findings were demonstrated in lean and nonlean murine models of NAFLD. Treating mice with an apical sodium‐dependent BA transporter inhibitor (SC‐435) resulted in marked increases in fgf15, a shift in the BA and microbiota profiles, and improved steatohepatitis in the lean model. Conclusions Differences in metabolic adaptation between patients with lean and nonlean NAFLD, at least in part, explain the pathophysiology and provide options for therapy.
ObjectiveVaccination against hepatitis B virus (HBV) confers protection from subsequent infection through immunological memory that is traditionally considered the domain of the adaptive immune system. This view has been challenged following the identification of antigen-specific memory natural killer cells (mNKs) in mice and non-human primates. While the presence of mNKs has been suggested in humans based on the expansion of NK cells following pathogen exposure, evidence regarding antigen-specificity is lacking. Here, we demonstrate the existence of HBV-specific mNKs in humans after vaccination and in chronic HBV infection.DesignNK cell responses were evaluated by flow cytometry and ELISA following challenge with HBV antigens in HBV vaccinated, non-vaccinated and chronic HBV-infected individuals.ResultsNK cells from vaccinated subjects demonstrated higher cytotoxic and proliferative responses against autologous hepatitis B surface antigen (HBsAg)-pulsed monocyte-derived dendritic cells (moDCs) compared with unvaccinated subjects. Moreover, NK cell lysis of HBsAg-pulsed moDCs was significantly higher than that of hepatitis B core antigen (HBcAg)-pulsed moDCs (non-vaccine antigen) or tumour necrosis factor α-activated moDCs in a NKG2D-dependent manner. The mNKs response was mediated by CD56dim NK cells coexpressing CD57, CD69 and KLRG1. Further, mNKs from chronic hepatitis B patients exhibited greater degranulation against HBcAg-pulsed moDCs compared with unvaccinated or vaccinated patients. Notably, mNK activity was negatively correlated with HBV DNA levels.ConclusionsOur data support the presence of a mature mNKs following HBV antigen exposure either through vaccination or infection. Harnessing these antigen specific, functionally active mNKs provides an opportunity to develop novel treatments targeting HBV in chronic infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.