SummaryBackgroundHow long one lives, how many years of life are spent in good and poor health, and how the population’s state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years.MethodsWe used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males.FindingsGlobally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1–7·8), from 65·6 years (65·3–65·8) in 1990 to 73·0 years (72·7–73·3) in 2017. The increase in years of life varied from 5·1 years (5·0–5·3) in high SDI countries to 12·0 years (11·3–12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1–33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8–15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9–6·7), from 57·0 years (54·6–59·1) in 1990 to 63·3 years (60·5–65·7) in 2017. The increase varied from 3·8 years (3·4–4·1) in high SDI countries to 10·5 years (9·8–11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4–1·7) in Saint Vincent and the Grenadines (62·4 years [59·9–64·7] in 1990 to 63·5 years [60·9–65·8] in 2017) to 23·7 years (21·9–25·6) in Eritrea (30·7 years [28·9–32·2] in 1990 to 54·4 years [51·5–57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6–2·3) in Algeria to 11·9 years (10·9–12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, a...
Summary Background Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. Findings The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9–78·6) for females and 72·0 years (68·8–75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0–49·5]) and for males was in Lesotho (41·5 years [39·0–44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97–6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74–6·27) for males and 6·49 years (6·08–6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61–1·93) for males and 1·96 years (1·69–2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (–2·3% [–5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. Interpretation At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases ...
BackgroundSocioeconomic status (SES) is associated with stroke incidence and mortality. Distribution of stroke risk factors is changing worldwide; evidence on these trends is crucial to the allocation of resources for prevention strategies to tackle major modifiable risk factors with the highest impact on stroke burden.MethodsWe extracted data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. We analysed trends in global and SES-specific age-standardised stroke incidence, prevalence, mortality, and disability-adjusted life years (DALYs) lost from 1990 to 2017. We also estimated the age-standardised attributable risk of stroke mortality associated with common risk factors in low-, low-middle-, upper-middle-, and high-income countries. Further, we explored the effect of age and sex on associations of risk factors with stroke mortality from 1990 to 2017.ResultsDespite a growth in crude number of stroke events from 1990 to 2017, there has been an 11.3% decrease in age-standardised stroke incidence rate worldwide (150.5, 95% uncertainty interval [UI] 140.3–161.8 per 100,000 in 2017). This has been accompanied by an overall 3.1% increase in age-standardised stroke prevalence rate (1300.6, UI 1229.0–1374.7 per 100,000 in 2017) and a 33.4% decrease in age-standardised stroke mortality rate (80.5, UI 78.9–82.6 per 100,000 in 2017) over the same time period. The rising trends in age-standardised stroke prevalence have been observed only in middle-income countries, despite declining trends in age-standardised stroke incidence and mortality in all income categories since 2005. Further, there has been almost a 34% reduction in stroke death rate (67.8, UI 64.1–71.1 per 100,000 in 2017) attributable to modifiable risk factors, more prominently in wealthier countries.ConclusionsAlmost half of stroke-related deaths are attributable to poor management of modifiable risk factors, and thus potentially preventable. We should appreciate societal barriers in lower-SES groups to design tailored preventive strategies. Despite improvements in general health knowledge, access to healthcare, and preventative strategies, SES is still strongly associated with modifiable risk factors and stroke burden; thus, screening of people from low SES at higher stroke risk is crucial.Electronic supplementary materialThe online version of this article (10.1186/s12916-019-1397-3) contains supplementary material, which is available to authorized users.
SummaryBackgroundEfforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment.MethodsWe measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator.FindingsThe global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.