Almonds (Prunus dulcis Miller D. A. Webb (the almond or sweet almond)), from the Rosaceae family, have long been known as a source of essential nutrients; nowadays, they are in demand as a healthy food with increasing popularity for the general population and producers. Studies on the composition and characterization of almond macro-and micronutrients have shown that the nut has many nutritious ingredients such as fatty acids, lipids, amino acids, proteins, carbohydrates, vitamins and minerals, as well as secondary metabolites. However, several factors affect the nutritional quality of almonds, including genetic and environmental factors. Therefore, investigations evaluating the effects of different factors on the quality of almonds were also included. In epidemiological studies, the consumption of almonds has been associated with several therapeutically and protective health benefits. Clinical studies have verified the modulatory effects on serum glucose, lipid and uric acid levels, the regulatory role on body weight, and protective effects against diabetes, obesity, metabolic syndrome and cardiovascular diseases. Moreover, recent researchers have also confirmed the prebiotic potential of almonds. The present review was carried out to emphasize the importance of almonds as a healthy food and source of beneficial constituents for human health, and to assess the factors affecting the quality of the almond kernel. Electronic databases including PubMed, Scopus, Web of Science and SciFinder were used to investigate previously published articles on almonds in terms of components and bioactivity potentials with a particular focus on clinical trials.
In the current study, pyroglutamic acid (pGlu), a natural amino acid derivative, has efficiently inhibited the catalytic activities of three important enzymes, namely: Human recombinant phosphodiesterase-5A1 (PDE5A1), human angiotensin-converting enzyme (ACE), and urease. These enzymes were reported to be associated with several important clinical conditions in humans. Radioactivity-based assay, spectrophotometric-based assay, and an Electrospray Ionization-Mass Spectrometry-based method were employed to ascertain the inhibitory actions of pGlu against PDE5A1, ACE, and urease, respectively. The results unveiled that pGlu potently suppressed the activity of PDE5A1 (half-maximal inhibitory concentration; IC50 = 5.23 µM) compared with that of standard drug sildenafil citrate (IC50 = 7.14 µM). Moreover, pGlu at a concentration of 20 µg/mL was found to efficiently inhibit human ACE with 98.2% inhibition compared with that of standard captopril (99.6%; 20 µg/mL). The urease-catalyzed reaction was also remarkably inactivated by pGlu and standard acetohydroxamic acid with IC50 values of 1.8 and 3.9 µM, respectively. Remarkably, the outcome of in vitro cytotoxicity assay did not reveal any significant cytotoxic properties of pGlu against human cervical carcinoma cells and normal human fetal lung fibroblast cells. In addition to in vitro assays, molecular docking analyses were performed to corroborate the outcomes of in vitro results with predicted structure–activity relationships. In conclusion, pGlu could be presented as a natural and multifunctional agent with promising applications in the treatment of some ailments connected with the above-mentioned anti-enzymatic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.