The aim of this study was to establish the involvement of calcium signalling in genotoxicity, apoptosis and necrosis evoked by ochratoxin A (OTA) and citrinin (CTN) alone or in combination in porcine kidney PK15 cells. Cell proliferation test (MTT) and trypan blue assays (24 h) demonstrated that CTN (IC(50) = 73.5 ± 1.0, 75.4 ± 1.4 μM, respectively) was less toxic than OTA (IC(50) = 14.0 ± 2.4, 20.5 ± 1.0 μM, respectively). To test their cytotoxic interactions, two doses of single OTA (6 and 10 μM) and CTN (30 and 50 μM) and their combinations were applied. Combined treatment showed additive cytotoxic effects. OTA and CTN induced dose-dependent increase in cytosolic calcium level (assessed with Fura-2 AM). However, combined treatment did not provoke additional increase in calcium signal. The rate of apoptosis and necrosis (DAPI-antifade staining) was significantly higher after 12 h than 24 h, while the frequencies of micronuclei (MNs) and nuclear buds (NBs) were higher after 24 h than 12 h treatment. Combined exposure resulted in apoptotic and necrotic synergism, while genotoxic effects of OTA + CTN were noted as antagonistic or additive. Co-exposure of cells to calcium chelator BAPTA-AM significantly reduced CTN and OTA + CTN-evoked apoptosis. Twenty-four hour after co-exposure to BAPTA-AM and a single OTA and CTN, MNs significantly decreased while NBs dropped significantly after co-treatment with BAPTA-AM and OTA + CTN. In conclusion, disturbance of Ca(2+) homeostasis caused by OTA and CTN plays a significant role in cell genotoxicity and death.
AimTo investigate whether the sex-dependent expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) changes in a rat model of ethylene glycol (EG)-induced hyperoxaluria.MethodsRats were given tap water (12 males and 12 females; controls) or EG (12 males and 12 females; 0.75% v/v in tap water) for one month. Oxaluric state was confirmed by biochemical parameters in blood plasma, urine, and tissues. Expression of sat-1 and rate-limiting enzymes of oxalate synthesis, alcohol dehydrogenase 1 (Adh1) and hydroxy-acid oxidase 1 (Hao1), was determined by immunocytochemistry (protein) and/or real time reverse transcription polymerase chain reaction (mRNA).ResultsEG-treated males had significantly higher (in μmol/L; mean ± standard deviation) plasma (59.7 ± 27.2 vs 12.9 ± 4.1, P < 0.001) and urine (3716 ± 1726 vs 241 ± 204, P < 0.001) oxalate levels, and more abundant oxalate crystaluria than controls, while the liver and kidney sat-1 protein and mRNA expression did not differ significantly between these groups. EG-treated females, in comparison with controls had significantly higher (in μmol/L) serum oxalate levels (18.8 ± 2.9 vs 11.6 ± 4.9, P < 0.001), unchanged urine oxalate levels, low oxalate crystaluria, and significantly higher expression (in relative fluorescence units) of the liver (1.59 ± 0.61 vs 0.56 ± 0.39, P = 0.006) and kidney (1.77 ± 0.42 vs 0.69 ± 0.27, P < 0.001) sat-1 protein, but not mRNA. The mRNA expression of Adh1 was female-dominant and that of Hao1 male-dominant, but both were unaffected by EG treatment.ConclusionsAn increased expression of hepatic and renal oxalate transporting protein sat-1 in EG-treated female rats could protect from hyperoxaluria and oxalate urolithiasis.
Methamidophos (O,S-dimethyl phosphorothioamidate) causes polyneuropathy in man and hens. However, experiments in the hen show that lower doses of methamidophos either protect from or promote the neuropathy caused by certain organophosphates. The initiation of neuropathy as well as protection from neuropathy are thought to be related to neuropathy target esterase (NTE), whereas promotion is likely to be due to interactions with another unknown target. Methamidophos is a racemate and we report studies with its resolved optical isomers, aimed at elucidating which isomer is responsible for the described effects. The time-course of acetylcholinesterase (AChE) and NTE activity in nervous tissues of hens after inhibition by single doses of either isomer showed that after D-(+) methamidophos (25 mg/kg PO) peak inhibition of both enzymes was achieved within 24 h (80-90%). However, after L-(-) methamidophos (15 mg/kg PO), peak inhibition (80-90%) was obtained within 24 h for AChE, whereas similar NTE inhibition (120 mg/kg PO) was observed only 4 days after dosing. The minimal neuropathic doses of D-(+) and L-(-) methamidophos were 60 and 120 mg/kg PO, respectively, and correlated with > 80% NTE inhibition in nervous tissues. OPIDP initiation by either isomer was slightly promoted by phenylmethanesulfonyl fluoride (120 mg/kg SC). D-(+) Methamidophos (25 mg/kg PO) partially protected from dibutyl dichlorovinyl-phosphate (DBDCVP) neuropathy (up to 0.8 mg/kg SC). This effect correlated with about 70% NTE inhibition. L-(-) Methamidophos (15 or 60 mg/kg PO) did not protect from DBDCVP neuropathy (0.2-0.8 mg/kg SC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.