Campath-1H, an anti-CD52 monoclonal antibody, was used as induction therapy (40 mg i.v. total dose) in 29 primary human renal transplants, and the patients were maintained on rapamycin monotherapy (levels 8-15 ng/mL) post-transplant. Campath-1H profoundly depletes lymphocytes long-term and more transiently depletes B cells and monocytes. All patients are alive and well at 3-29 months of follow up. One graft was lost because of rejection. There have been no systemic infections and no malignancies. Eight of 29 patients have experienced rejection, which was successfully treated in seven of eight patients. Five of these patients had pathological evidence of a humoral component of their rejection. Seven of the 29 patients were converted to standard triple therapy on account of rejection. Rapamycin was generally well tolerated in that there were no significant wound-healing problems; two lymphoceles required surgical drainage; and most patients were treated with a lipid-lowering agent. Flow crossmatch testing post-transplant revealed evidence of alloantibody in two patients tested with previous combined cellular and humoral rejection. Biopsies have shown no chronic allograft nephropathy to date. In view of the relatively high incidence of early humoral rejection, we plan to modify the immunosuppressive regimen in subsequent pilot studies. This clinical trial provides insight into the use of Campath-1H induction in combination with rapamycin maintenance monotherapy.
A noninvasive urinary test that diagnoses acute renal allograft dysfunction would benefit renal transplant patients. We aimed to develop a rapid urinary diagnostic test by detecting chemokines. Seventythree patients with renal allograft dysfunction prompting biopsy and 26 patients with stable graft function were recruited. Urinary levels of CXCR3-binding chemokines, monokine induced by IFN-c (Mig/CXCL9), IFN-c -induced protein of 10 kDa (IP-10/CXCL10), and IFN-inducible T-cell chemoattractant (I-TAC/CXCL11), were determined by a particle-based triplex assay. IP-10, Mig and I-TAC were significantly elevated in renal graft recipients with acute rejection, acute tubular injury and BK virus nephritis. Using 100 pg/mL as the threshold level, both IP-10 and Mig had diagnostic value (sensitivity 86.4%; specificity 91.3%) in differentiating acute graft dysfunction from other clinical conditions. In terms of monitoring the response to antirejection therapy, this urinary test is more sensitive and predictive than serum creatinine. These results indicate that this rapid test is clinically useful.
Approaches that prevent acute rejection of renal transplants in a rhesus monkey model were studied to determine a common mechanism of acceptance. After withdrawal of immunosuppression, all 14 monkeys retained normal allograft function for >6 mo. Of these, nine rejected their renal allograft during the study, and five maintained normal function throughout the study period. The appearance of TGF-β1+ interstitial mononuclear cells in the graft coincided with a nonrejection histology, whereas the absence/disappearance of these cells was observed with the onset of rejection. Analysis with a variety of TGF-β1-reactive Abs indicated that the tolerance-associated infiltrates expressed the large latent complex form of TGF-β1. Peripheral leukocytes from rejecting monkeys lacking TGF-β1+ allograft infiltrates responded strongly to donor Ags in delayed-type hypersensitivity trans-vivo assays. In contrast, allograft acceptors with TGF-β1+ infiltrates demonstrated a much weaker peripheral delayed-type hypersensitivity response to donor alloantigens (p < 0.01 vs rejectors), which could be restored by Abs that either neutralized active TGF-β1 or blocked its conversion from latent to active form. Anti-IL-10 Abs had no restorative effect. Accepted allografts had CD8+ and CD4+ interstitial T cell infiltrates, but only the CD4+ subset included cells costaining for TGF-β1. Our data support the hypothesis that the recruitment of CD4+ T regulatory cells to the allograft interstitium is a final common pathway for metastable renal transplant tolerance in a non-human primate model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.