Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1/LIR1/ILT2) is an inhibitory receptor broadly expressed on leukocytes and recognizes HLA-class I and human cytomegalovirus UL18. LILRB1 is encoded within the leukocyte receptor complex on 19q13.4, previously implicated to be a susceptibility region to systemic lupus erythematosus (SLE). In this study, we screened for polymorphisms of LILRB1 and examined their association with SLE and rheumatoid arthritis (RA). In the 5' portion of LILRB1, three haplotypes containing four non-synonymous substitutions within the ligand-binding domains and two single nucleotide polymorphisms within the promoter region were identified and designated as PE01-03. In the 3' portion, two haplotypes (CY01, 02) containing a non-synonymous substitution of the cytoplasmic region were identified. CY01 and 02 did not co-segregate with PE01-03. Significant association with susceptibility to SLE or RA was not observed; however, among the subjects not carrying RA-associated HLA-DRB1 shared epitope (SE), LILRB1.PE01/01 diplotype was significantly associated with RA (odds ratio 2.05, P = 0.019 and Pc = 0.038). Gross difference was not observed in the crystal structures, thermostabilities and binding affinities to HLA-class I ligands among LILRB1.PE01-03 haplotype products; however, surface expression of LILRB1 was significantly decreased in lymphocytes and monocytes from the carriers of PE01 haplotype. These findings demonstrated that LILRB1 is highly polymorphic and is associated with susceptibility to RA in HLA-DRB1 SE negative subjects, possibly by insufficient inhibitory signaling in leukocytes. In addition, these observations suggested that the polymorphisms of LILR family members may be substantially involved in the diversity of human immune responses.
Objective. To determine whether the IRF5 gene, which encodes interferon regulatory factor 5, is associated with systemic lupus erythematosus (SLE) in a Japanese population.Methods. A case-control study was performed in 277 SLE patients and 201 healthy controls. Associations between the IRF5 genotype and levels of messenger RNA (mRNA) for interferon (IFN) pathway genes were examined using an mRNA expression database of HapMap samples.Results. Carriers of the rs2004640T single-nucleotide polymorphism (SNP) were slightly increased among SLE patients (58.8%) as compared with controls (50.2%). When data from our Japanese population were combined with previously published data from a Korean population, the T allele frequency was found to be significantly increased in SLE patients (P ؍ 8.3 ؋ 10 ؊5 ). While no association was observed for the rs10954213 SNP or the exon 6 insertion/deletion, significant associations with 3 intron 1 SNPs (-4001, rs6953165, and rs41298401) were found. The allele frequency of rs41298401G was significantly decreased in SLE patients (13.0% versus 18.7% in controls; P ؍ 0.017), and the allele frequency of rs6953165G, which was in absolute linkage disequilibrium with -4001A, was increased in SLE patients (8.8% versus 5.2% in controls; P ؍ 0.034). The Caucasian risk haplotype was not present; instead, a protective haplotype carrying rs2004640G, rs41298401G, the deletion in exon 6, and rs10954213A was identified. SNP rs10954213, but not intron 1 SNPs, was associated with IRF5 at the mRNA level; nevertheless, intron 1 SNPs were also associated with levels of mRNA for several IFN pathway genes, suggesting a functional role.Conclusion. IRF5 was found to be associated with SLE in Asian populations. Intron 1 SNPs, rather than exon 6 and 3 -untranslated region polymorphisms, appeared to play a crucial role.Over the last 2 decades, evidence has emerged of the involvement of type I interferon (IFN) in the pathogenesis of systemic lupus erythematosus (SLE) (1). Elevated serum levels of IFN in SLE patients have been reported (2), and gene expression analyses using microarrays have revealed IFN-inducible genes to be upregulated in peripheral blood cells from SLE patients (3-6).Recently, analyses of single-nucleotide polymorphisms (SNPs) in genes of the type I IFN pathway
IntroductionTNFAIP3 interacting protein 1, TNIP1 (ABIN-1) is involved in inhibition of nuclear factor-κB (NF-κB) activation by interacting with TNF alpha-induced protein 3, A20 (TNFAIP3), an established susceptibility gene to systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recent genome-wide association studies revealed association of TNIP1 with SLE in the Caucasian and Chinese populations. In this study, we investigated whether the association of TNIP1 with SLE was replicated in a Japanese population. In addition, association of TNIP1 with RA was also examined.MethodsA case-control association study was conducted on the TNIP1 single nucleotide polymorphism (SNP) rs7708392 in 364 Japanese SLE patients, 553 RA patients and 513 healthy controls.ResultsAssociation of TNIP1 rs7708392C was replicated in Japanese SLE (allele frequency in SLE: 76.5%, control: 69.9%, P = 0.0022, odds ratio [OR] 1.40, 95% confidence interval [CI] 1.13-1.74). Notably, the risk allele frequency in the healthy controls was considerably greater in Japanese (69.9%) than in Caucasians (24.3%). A tendency of stronger association was observed in the SLE patients with renal disorder (P = 0.00065, OR 1.60 [95%CI 1.22-2.10]) than in all SLE patients (P = 0.0022, OR 1.40 [95%CI 1.13-1.74]). Significant association with RA was not observed, regardless of the carriage of human leukocyte antigen DR β1 (HLA-DRB1) shared epitope. Significant gene-gene interaction between TNIP1 and TNFAIP3 was detected neither in SLE nor RA.ConclusionsAssociation of TNIP1 with SLE was confirmed in a Japanese population. TNIP1 is a shared SLE susceptibility gene in the Caucasian and Asian populations, but the genetic contribution appeared to be greater in the Japanese and Chinese populations because of the higher risk allele frequency. Taken together with the association of TNFAIP3, these observations underscore the crucial role of NF-κB regulation in the pathogenesis of SLE.
IntroductionThe Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3' untranslated region (3' UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population.MethodsA case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls.ResultsIn addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3' UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3' UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3' UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE.ConclusionsThe TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3' UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations.
These results suggest the involvement of MAIT cells in the pathogenesis of AS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.