The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by neutron irradiation and reached 0.8 at% at 473K and 0.4 at% at 773 K. Annealing tests for the specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the trapping at high temperature were stable at least up to 973 K, while the density decreased at temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the activation energy for D detrapping examined in a previous study (≈1.8 eV) indicated that the defects which contribute predominantly to trapping at 773 K were small voids. The higher concentration of trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are more effective for using this effect for tritium removal in fusion reactors.2
Retention of D in neutron-irradiated W and desorption were examined after plasma exposure at 773 K. Deuterium was accumulated at a relatively high concentration up to a large depth of 50-100 m due to the trapping effects of defects uniformly induced in the bulk. A
The time-of-flight (TOF) type near-backscattering spectrometer (n-BSS), DNA, with Si crystal analyzers was built and started operation in 2012 at the Materials and Life Science Experimental Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). DNA is the first n-BSS with pulse shaping chopper installed at a spallation pulsed neutron source. It offers currently the highest energy-resolution of about 2.4 micro eV by operating a pulse shaping double-disk chopper at 225 Hz whose phase is optimized to the narrowest slit of 10 mm width. Energy resolution can be flexibly compromised with intensity during experiment by using two type slits with different widths and changing the copper frequency. An example of measurement with high energy-resolution under the condition that the pulse shaping chopper was operated is shown, where the limited measurable energy range was widely expanded by multi incident energy band technique. The experimental data demonstrate extremely high signal-to-noise ratio (~10 5) of this spectrometer.
The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport.
Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50-70 • C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 • C twice at the ion fluence of 5 × 10 25 m −2 to reach the total ion fluence of 1 × 10 26 m −2 in order to investigate the near-surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate the irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near-surface (<5 µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.3 dpa) at 500 • C cases even in the relatively low ion fluence of 10 26 m −2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.