Due to their bacterial ancestry, many components of mitochondria share structural similarities with bacteria. Release of molecular danger signals from injured cell mitochondria (mitochondria-derived damage-associated molecular patterns, mito-DAMPs) triggers a potent inflammatory response, but their role in fibrosis is unknown. Using liver fibrosis resistant/susceptible mouse strain system, we demonstrate that mito-DAMPs released from injured hepatocyte mitochondria (with mtDNA as major active component) directly activate hepatic stellate cells, the fibrogenic cell in the liver, and drive liver scarring. The release of mito-DAMPs is controlled by efferocytosis of dying hepatocytes by phagocytic resident liver macrophages and infiltrating Gr-1(+) myeloid cells. Circulating mito-DAMPs are markedly increased in human patients with non-alcoholic steatohepatitis (NASH) and significant liver fibrosis. Our study identifies specific pathway driving liver fibrosis, with important diagnostic and therapeutic implications. Targeting mito-DAMP release from hepatocytes and/or modulating the phagocytic function of macrophages represents a promising antifibrotic strategy.
Abnormalities of extracellular matrix (ECM) metabolism, i.e., overproduction and/or inhibition of ECM breakdown, may contribute to progression of fibrotic degeneration in the kidney. Earlier studies revealed that major ECM components, type I, III, and IV collagens, etc., were accumulated in glomeruli and tubulointerstitium in kidneys of Institute of Cancer Research (ICR) derived glomerulonephritis (ICGN) mice which are a novel inbred strain of mice with a hereditary nephrotic syndrome of unknown etiology and are considered to be a good model of human idiopathic nephrotic syndrome. In the present study, we compared the activities of matrix metalloproteinases (MMPs), a family of enzymes that degrade ECM components, in the kidneys of aged ICGN mice and age-matched ICR mice as normal controls. We biochemically measured interstitial collagenase (MMP-1), gelatinase (MMP-2 and MMP-9), and stromelysin (MMP-3) activities in the kidney tissues. Lower activities of MMP-1 and MMP-2 and MMP-9 were demonstrated in the kidneys of ICGN mice as compared with those of ICR mice, but there were no significant differences in the MMP-3 activities between these strains. These results show that decreased MMP activities cause abnormal accumulation of ECM in ICGN mouse kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.