The model performance of a regional-scale meteorology-chemistry model (NHM-Chem) has been evaluated for the consistent predictions of the chemical, physical, and optical properties of aerosols. These properties are essentially important for the accurate assessment of air quality and health hazards, contamination of land and ocean ecosystems, and regional climate changes due to aerosol-cloud-radiation interaction processes. Currently, three optional methods are available: the five-category non-equilibrium method, the three-category non-equilibrium method, and the bulk equilibrium method. These three methods are suitable for the predictions of regional climate, air quality, and operational forecasts, respectively. In this paper, the simulated aerosol chemical, physical, and optical properties and their consistency were evaluated using various observation data in East Asia. The simulated mass, size, and deposition of SO 4 2− and NH 4 + agreed well with the observations, whereas those of NO 3 − , sea salt, and dust needed improvement. The simulated surface mass concentration (PM 10 and PM 2.5) and spherical extinction coefficient agreed well with the observations. The simulated aerosol optical thickness (AOT) and dust extinction coefficient were significantly underestimated.
[1] All available SO 2 flux data for 32 years of Japanese volcanoes, accounting for about 10% of the world's arc volcanoes, were compiled to evaluate the temporal variation of the flux of each volcano and to estimate the time-averaged SO 2 flux. The compiled data revealed that 6 volcanoes (Tokachi, Asama, Aso, Sakurajima, Satsuma-Iwojima, and Suwanosejima volcanoes) out of 17 significantly degassing volcanoes usually contributed more than 94% of the total flux. The time-averaged annual flux was 2.2 Tg a
À1, which includes intense degassing of Miyakejima volcano after 2000, which raised the figure from 1.4 Tg a
À1, indicating that a single huge emitter is capable of significantly skewing regional time-averaged degassing totals and indicating that the time-averaged flux assessments for infrequent huge emitters are important for accurate estimation. The regional SO 2 flux distribution in cumulative frequency-flux plot does not obey a power law distribution. It shows a roll-off curve bending at about 500 t d
À1, implying that it is misleading to assume the power law distribution for estimation of the global flux. Because the contribution of the major degassing volcanoes including the six volcanoes and additional sporadically degassing volcanoes during eruptive and posteruptive periods to the total flux is more than 95%, measurement of all large flux volcanoes can approximate the global flux.
Insight into complex rupturing of the immature bending normal fault in the outer slope of the Japan Trench from aftershocks of the 2005 Sanriku earthquake (M w = 7.0) located by ocean bottom seismometry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.