The fragile X syndrome, a common cause of inherited mental retardation, is characterized by an unusual mode of inheritance. Phenotypic expression has been linked to abnormal cytosine methylation of a single CpG island, at or very near the fragile site. Probes adjacent to this island detected very localized DNA rearrangements that constituted the fragile X mutations, and whose target was a 550-base pair GC-rich fragment. Normal transmitting males had a 150- to 400-base pair insertion that was inherited by their daughters either unchanged, or with small differences in size. Fragile X-positive individuals in the next generation had much larger fragments that differed among siblings and showed a generally heterogeneous pattern indicating somatic mutation. The mutated allele appeared unmethylated in normal transmitting males, methylated only on the inactive X chromosome in their daughters, and totally methylated in most fragile X males. However, some males had a mosaic pattern. Expression of the fragile X syndrome thus appears to result from a two-step mutation as well as a highly localized methylation. Carriers of the fragile X mutation can easily be detected regardless of sex or phenotypic expression, and rare apparent false negatives may result from genetic heterogeneity or misdiagnosis.
The fragile X syndrome is an X-linked inherited disease and is the result of transcriptional inactivation of the FMR1 gene and the absence of its encoded FMR protein (FMRP). Using a specific monoclonal antibody directed against human FMRP, we have studied the steady-state levels of its murine homolog in several tissues and organs of adult and young mice. In immunoblot analyses, the antibody recognizes a heterogeneous subset of proteins with apparent molecular weights ranging from 80 to 70 kDa. These proteins are detected in all the 27 tissues tested; however, the relative proportion of each polypeptide recognized varies between tissues, and a significantly higher expression is observed in young animals. Northern blot analysis of RNA extracted from selected tissues from adult mouse shows that these tissues express the major 4.8 kb mRNA, although at different levels, and contain several additional shorter transcripts, particularly in muscular tissues. We also report that expression of the FMR1 gene is modulated in proliferating and quiescent primary mouse kidney cell cultures with an inverse relationship between levels of FMR1 mRNA and of its encoded proteins. This suggests that FMRPs are highly stable in quiescent cells and that FMR1 expression is likely post-transcriptionally controlled. Our results document the widespread expression of the FMR1 gene, and suggest that it is controlled by different mechanisms implicated in cell growth and differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.