Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.
Fig. 2. Spatial coverage of GrassPlot data from Morocco to Japan. Currently, the majority comes from sub-Mediterranean to hemiboreal Europe (black = multi-scale plots, grey = other plots). Current content v. 1.00 (January 2018) • 126 datasets • 198 data owners • 36 countries • 168,997 plots, among them 14,064 with data also for non-vascular plants • 66,000 0.01-m² plots, 17,206 1-m² plots, 5,520 10-(or 9-) m² plots, 2,545 100-m² plots • 2,797 nested-plot series (with at least 4 grain sizes)
Citizen science is a rapidly growing emerging field in science and it is gaining importance in education. Therefore, this study was conducted to document the pedagogical content knowledge (PCK) of biology teachers who participated in a citizen science project involving observation of wild bees and identification of butterflies. In this paper, knowledge about how these biological methods can be taught to students is presented. After two years in the project, four teachers were interviewed and their PCK was captured in the form of content representations (CoRes) and Pedagogical and Professional-Experience Repertoires (PaP-eRs). These results can help future citizen science projects to link their activities to the school curriculum. But not only success can be reported: although one of the project team's aims was to make the Nature of Science accessible to the teachers and students in the course of the project, the teachers did not take this aspect into account. This paper discusses the possible reasons and proposes various strategies for improving citizen science in the context of school biology learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.