COVID-19 disease, caused by SARS-CoV-2 infection, has resulted in more than 15.5 million infections and 634,000 deaths worldwide. A recent study of hospitals in New York City, at the initial epicenter of the COVID-19 pandemic in the United States, reported that, during March 2020, 21% of patients hospitalized with confirmed COVID-19 died 1 . These findings are aligned with outcomes observed in the Mount Sinai Health System 2,3 . There are currently no curative or preventive therapies for COVID-19, highlighting the need to enhance current understanding of SARS-CoV-2 pathogenesis for the rational development of therapeutics.Recent studies have suggested that, in addition to direct viral damage, uncontrolled inflammation contributes to disease severity in 5 ). Consistent with this hypothesis, high levels of inflammatory markers, including C-reactive protein (CRP), ferritin and D-dimer, high neutrophil-to-lymphocyte ratio [6][7][8][9] and increased levels of inflammatory cytokines and chemokines 6,8-11 have been observed in patients with severe diseases. Pathogenic inflammation, also referred to as cytokine storm, shares similarities with what was previously seen in patients infected with other severe coronaviruses, including SARS-CoV and Middle East respiratory syndrome coronavirus 12 , and bears similarities to cytokine release syndrome (CRS) observed in patients with cancer treated with chimeric antigen receptor-modified (CAR) T cells 13 . Tocilizumab, an IL-6 receptor inhibitor, is a US Food and Drug Administration (FDA)-approved treatment for CRS in patients receiving CAR T cells 14 . Several single-center studies have used IL-6 inhibitors to treat patients with COVID-19 with some clinical benefits 15 and reported failures 14 . Beyond IL-6, several cytokines have been shown to be elevated in CRS and to contribute to tissue damage. TNF-α is important in nearly all acute inflammatory reactions, acting as an amplifier of inflammation. TNF-α blockade has been used to treat more than ten different autoimmune inflammatory diseases, suggesting that this might be a potential therapeutic approach to reduce organ damage in patients with ). IL-1 is also a highly active pro-inflammatory cytokine, and monotherapy blocking
Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1) and mucosal immune dysregulation (IL-17A, CCL20, CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK- and T- lymphocytes, suggesting extravasation to affected tissues. Finally, we profiled the auto-antigen reactivity of MIS-C plasma, which revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal and immune-cell antigens. All patients were treated with anti-IL6R antibody and/or IVIG, which led to rapid disease resolution.
A subset of patients with depression have elevated levels of inflammatory cytokines, and some studies demonstrate interaction between inflammatory factors and treatment outcome. However, most studies focus on only a narrow subset of factors in a patient sample. In the current study, we analyzed broad immune profiles in blood from patients with treatment-resistant depression (TRD) at baseline and following treatment with the glutamate modulator ketamine. Serum was analyzed from 26 healthy control and 33 actively depressed TRD patients free of antidepressant medication, and matched for age, sex and body mass index. All subjects provided baseline blood samples, and TRD subjects had additional blood draw at 4 and 24 h following intravenous infusion of ketamine (0.5 mg kg−1). Samples underwent multiplex analysis of 41 cytokines, chemokines and growth factors using quantitative immunoassay technology. Our a priori hypothesis was that TRD patients would show elevations in canonical pro-inflammatory cytokines; analyses demonstrated significant elevation of the pro-inflammatory cytokine interleukin-6. Further exploratory analyses revealed significant regulation of four additional soluble factors in patients with TRD. Several cytokines showed transient changes in level after ketamine, but none correlated with treatment response. Low pretreatment levels of fibroblast growth factor 2 were associated with ketamine treatment response. In sum, we found that patients with TRD demonstrate a unique pattern of increased inflammatory mediators, chemokines and colony-stimulating factors, providing support for the immune hypothesis of TRD. These patterns suggest novel treatment targets for the subset of patients with TRD who evidence dysregulated immune functioning.
The COVID-19 pandemic caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to more than 100,000 deaths in the United States. Several studies have revealed that the hyper-inflammatory response induced by SARS-CoV-2 is a major cause of disease severity and death in infected patients. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum IL-6, IL-8, TNF-α, and IL-1β in hospitalized COVID-19 patients upon admission to the Mount Sinai Health System in New York. Patients (n=1484) were followed up to 41 days (median 8 days) and clinical information, laboratory test results and patient outcomes were collected. In 244 patients, cytokine measurements were repeated over time, and effect of drugs could be assessed. Kaplan-Meier methods were used to compare survival by cytokine strata, followed by Cox regression models to evaluate the independent predictive value of baseline cytokines. We found that high serum IL-6, IL-8, and TNF-α levels at the time of hospitalization were strong and independent predictors of patient survival. Importantly, when adjusting for disease severity score, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF-α serum levels remained independent and significant predictors of disease severity and death. We propose that serum IL-6 and TNF-α levels should be considered in the management and treatment of COVID-19 patients to stratify prospective clinical trials, guide resource allocation and inform therapeutic options. We also propose that patients with high IL-6 and TNF-α levels should be assessed for combinatorial blockade of pathogenic inflammation in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.