IMPORTANCE Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor.OBJECTIVE To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. MAIN OUTCOMES AND MEASURESProgression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. RESULTSOf the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. CONCLUSIONS AND RELEVANCEIn the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis.TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00916409
IMPORTANCE Clinical outcomes for glioblastoma remain poor. Treatment with immune checkpoint blockade has shown benefits in many cancer types. To our knowledge, data from a randomized phase 3 clinical trial evaluating a programmed death-1 (PD-1) inhibitor therapy for glioblastoma have not been reported.OBJECTIVE To determine whether single-agent PD-1 blockade with nivolumab improves survival in patients with recurrent glioblastoma compared with bevacizumab. DESIGN, SETTING, AND PARTICIPANTSIn this open-label, randomized, phase 3 clinical trial, 439 patients with glioblastoma at first recurrence following standard radiation and temozolomide therapy were enrolled, and 369 were randomized. Patients were enrolled between September 2014 and May 2015. The median follow-up was 9.5 months at data cutoff of January 20, 2017. The study included 57 multicenter, multinational clinical sites.INTERVENTIONS Patients were randomized 1:1 to nivolumab 3 mg/kg or bevacizumab 10 mg/kg every 2 weeks until confirmed disease progression, unacceptable toxic effects, or death. MAIN OUTCOMES AND MEASURES The primary end point was overall survival (OS).RESULTS A total of 369 patients were randomized to nivolumab (n = 184) or bevacizumab (n = 185). The MGMT promoter was methylated in 23.4% (43/184; nivolumab) and 22.7% (42/185; bevacizumab), unmethylated in 32.1% (59/184; nivolumab) and 36.2% (67/185; bevacizumab), and not reported in remaining patients. At median follow-up of 9.5 months, median OS (mOS) was comparable between groups: nivolumab, 9.8 months (95% CI, 8.2-11.8); bevacizumab, 10.0 months (95% CI, 9.0-11.8); HR, 1.04 (95% CI, 0.83-1.30); P = .76. The 12-month OS was 42% in both groups. The objective response rate was higher with bevacizumab (23.1%; 95% CI, 16.7%-30.5%) vs nivolumab (7.8%; 95% CI, 4.1%-13.3%). Grade 3/4 treatment-related adverse events (TRAEs) were similar between groups (nivolumab, 33/182 [18.1%]; bevacizumab, 25/165 [15.2%]), with no unexpected neurological TRAEs or deaths due to TRAEs. CONCLUSIONS AND RELEVANCEAlthough the primary end point was not met in this randomized clinical trial, mOS was comparable between nivolumab and bevacizumab in the overall patient population with recurrent glioblastoma. The safety profile of nivolumab in patients with glioblastoma was consistent with that in other tumor types.
No abstract
Purpose Stereotactic radiosurgery (SRS), whole-brain radiotherapy (WBRT), and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are treatment options for brain metastases in patients with EGFR-mutant non-small-cell lung cancer (NSCLC). This multi-institutional analysis sought to determine the optimal management of patients with EGFR-mutant NSCLC who develop brain metastases and have not received EGFR-TKI. Materials and Methods A total of 351 patients from six institutions with EGFR-mutant NSCLC developed brain metastases and met inclusion criteria for the study. Exclusion criteria included prior EGFR-TKI use, EGFR-TKI resistance mutation, failure to receive EGFR-TKI after WBRT/SRS, or insufficient follow-up. Patients were treated with SRS followed by EGFR-TKI, WBRT followed by EGFR-TKI, or EGFR-TKI followed by SRS or WBRT at intracranial progression. Overall survival (OS) and intracranial progression-free survival were measured from the date of brain metastases. Results The median OS for the SRS (n = 100), WBRT (n = 120), and EGFR-TKI (n = 131) cohorts was 46, 30, and 25 months, respectively ( P < .001). On multivariable analysis, SRS versus EGFR-TKI, WBRT versus EGFR-TKI, age, performance status, EGFR exon 19 mutation, and absence of extracranial metastases were associated with improved OS. Although the SRS and EGFR-TKI cohorts shared similar prognostic features, the WBRT cohort was more likely to have a less favorable prognosis ( P = .001). Conclusion This multi-institutional analysis demonstrated that the use of upfront EGFR-TKI, and deferral of radiotherapy, is associated with inferior OS in patients with EGFR-mutant NSCLC who develop brain metastases. SRS followed by EGFR-TKI resulted in the longest OS and allowed patients to avoid the potential neurocognitive sequelae of WBRT. A prospective, multi-institutional randomized trial of SRS followed by EGFR-TKI versus EGFR-TKI followed by SRS at intracranial progression is urgently needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.