The possible involvement of the Rho-p160ROCK (Rho coiled-coil kinase) pathway in the signaling induced by the chemokine Stromal cell-derived factor (SDF)-1α has been studied in human PBL. SDF-1α induced activation of RhoA, but not that of Rac. RhoA activation was followed by p160ROCK activation mediated by RhoA, which led to myosin light chain (MLC) phosphorylation, which was dependent on RhoA and p160ROCK activities. The kinetics of MLC activation was similar to that of RhoA and p160ROCK. The role of this cascade in overall cell morphology and functional responses to the chemokine was examined employing different chemical inhibitors. Inhibition of either RhoA or p160ROCK did not block SDF-1α-induced short-term actin polymerization, but induced the formation of long spikes arising from the cell body, which were found to be microtubule based. This morphological change was associated with an increase in microtubule instability, which argues for an active microtubule polymerization in the formation of these spikes. Inhibition of the Rho-p160ROCK-MLC kinase signaling cascade at different steps blocked lymphocyte migration and the chemotaxis induced by SDF-1α. Our results indicate that the Rho-p160ROCK axis plays a pivotal role in the control of the cell shape as a step before lymphocyte migration toward a chemotactic gradient.
Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and they suggest that CB2 may be a biomarker with prognostic value in these tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.