The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements
The kagome lattice based on 3d transition metals is a versatile platform for novel topological phases hosting symmetry-protected electronic excitations and exotic magnetic ground states. However, the paradigmatic states of the idealized two-dimensional (2D) kagome lattice -Dirac fermions and topological flat bands -have not been simultaneously observed, partly owing to the complex stacking structure of the kagome compounds studied to date. Here, we take the approach of examining FeSn, an antiferromagnetic single-layer kagome metal with spatially-decoupled kagome planes. Using polarization-and termination-dependent angleresolved photoemission spectroscopy (ARPES), we detect the momentum-space signatures of coexisting flat bands and Dirac fermions in the vicinity of the Fermi energy. Intriguingly, when complemented with bulk-sensitive de Haas-van Alphen (dHvA) measurements, our data reveal an even richer electronic structure that exhibits robust surface Dirac fermions on specific crystalline terminations. Through band structure calculations and matrix element simulations, we demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals under kagome symmetry, while the surface state realizes a rare example of fully spin-polarized 2D Dirac fermions when combined with spin-layer locking in FeSn. These results highlight FeSn as a prototypical host for the emergent excitations of the kagome lattice. The prospect to harness these excitations for novel topological phases and spintronic devices is a frontier of great promise at the confluence of topology, magnetism, and strongly-correlated electron physics.
Commonly materials are classified as either electrical conductors or insulators. The theoretical discovery of topological insulators (TIs) in 2005 has fundamentally challenged this dichotomy 1 . In a TI, spin-orbit interaction generates a non-trivial topology of the electronic band-structure dictating that its bulk is perfectly insulating, while its surface is fully conducting. The first TI candidate material put forward 2 -graphene -is of limited practical use since its weak spin-orbit interactions produce a band-gap 3 of ∼0.01K. Recent reinvestigation of Bi 2 Se 3 and Bi 2 Te 3 , however, have firmly categorized these materials as strong three-dimensional TI's. [4][5][6][7][8] We have synthesized the first bulk material belonging to an entirely different, weak, topological class, built from stacks of two-dimensional TI's: Bi 14 Rh 3 I 9 .Its Bi-Rh sheets are graphene analogs, but with a honeycomb net composed of RhBi 8 -cubes rather than carbon atoms. The strong bismuth-related spin-orbit interaction renders each graphene-like layer a TI with a 2400K band-gap. 1 arXiv:1303.2193v1 [cond-mat.mtrl-sci]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.