Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells, Nature Photonics, 2016. 10(11) Encouraging performance metrics of light-emitting diodes (LEDs) based on 3Dperovskites, such as low turn-on voltages and external quantum efficiencies (EQEs) of up to 3.5% at high current densities, have been demonstrated 9 . However, the EL quantum efficiency is far behind the limit predicated by ~70% PLQE of the 3D perovskites, mainly due to the existence of current losses caused by incomplete surface coverage of the perovskite films and the fact that the high PLQE can only be obtained at high excitations 8,9 . By using thick (>300 nm) perovskite films, Cho et al.obtained LEDs with over 8% EQE 10 . However, for this device, the turn-on voltage is high and the power efficiency is low, which may result from the thick perovskite layer used. In order to further enhance the performance of 3D perovskite-based LEDs, it is 3 essential to obtain perovskite thin films with both complete surface coverage and high PLQE [8][9][10] . Moreover, device stability, which was proven to be a vital issue in organic-inorganic halide perovskite-based photovoltaics 11 , has not been addressed in perovskite LEDs.The 3D perovskites are actually an extreme case of layered organometal halide perovskites with a general formula of L2(SMX3)n-1MX4, where M, X, L, and S are a divalent metal cation, a halide, and organic cations with long and short chains, respectively ( Fig. 1a) [12][13][14] . Here n is the number of semiconducting MX4 monolayer sheets within the two organic insulating layers (cation L), with n=∞ corresponding to the structure of a 3D perovskite SMX3. With smaller numbers of MX4 layers, quantum confinement effects, such as an increase in bandgap and exciton energy, become important 6,15 . In consequence, the layered perovskites naturally form quantum-well structures. At the opposite extreme, when n=1, the layered perovskites form a monolayer structure of a two-dimensional (2D) perovskite L2MX4. The 2D L2MX4 perovskites generally have good film-formation properties 13 . Nevertheless, the PLQEs of the 2D perovskites are rather low at room temperature, owing to fast exciton quenching rates 6,7 . LEDs based on the 2D perovskites have been attempted, while the devices are either very low in efficiency or only operational at cryogenic temperatures [16][17][18] . Here we demonstrate very efficient (up to 11.7% EQE) and high-brightness EL achievable at room temperature by using solution-processed perovskite multiple quantum wells (MQWs) with an energy cascade, which can combine the advantages of 2D and 3D perovskites. We note, a relevant perovskite LED work 19 which shows a peak EQE of 8.8% has been published online during the revision of this paper.A precursor solution of 1-naphthylmethylamine iodide (NMAI), formamidinium iodide (FAI), and PbI2 with a molar ratio of 2:1:2 dissolved in N,N-dimethylformamide (DMF) was used to deposit perovskite films (see Methods for details), which are abbreviated as NFPI...
such as charge-carrier lifetimes and diffusion lengths in perovskite films should be maximized, which are sensitive to the density of sub-bandgap trap states acting as nonradiative recombination centers. [12,13] Long carrier lifetimes and diffusion lengths imply a reduction in trap densities constituted by multidimensional defects that can be broadly observed at the grain boundaries and surfaces of polycrystalline perovskite films. Therefore, defect modulation to efficiently suppress the undesired nonradiative recombination pathways in perovskite films have resulted in dramatically enhanced carrier lifetimes and diffusion lengths, which can be translated into higher open-circuit voltage (V OC) of photovoltaic devices. [14-18] Recently, surface post-treatments, such as depositing a layer of ammonium salts onto the perovskites, are the most frequently employed strategies, passivating the defects in the topmost area of the perovskite films. [19-22] However, the additional depositing procedure is considered to bring much uncertainty to the original perovskite films. [23,24] Recently, Yoo et al. demonstrated that the commonly used solvents (e.g., isopropanol) for dissolving ammonium salts, due to their strong polarity, had negative effects on the underlying perovskite films. [25] Lead halide perovskite films have witnessed rapid progress in optoelectronic devices, whereas polycrystalline heterogeneities and serious native defects in films are still responsible for undesired recombination pathways, causing insufficient utilization of photon-generated charge carriers. Here, radiationenhanced polycrystalline perovskite films with ultralong carrier lifetimes exceeding 6 μs and single-crystal-like electron-hole diffusion lengths of more than 5 μm are achieved. Prolongation of charge-carrier activities is attributed to the electronic structure regulation and the defect elimination at crystal boundaries in the perovskite with the introduction of phenylmethylammonium iodide. The introduced electron-rich anchor molecules around the host crystals prefer to fill the halide/organic vacancies at the boundaries, rather than form low-dimensional phases or be inserted into the original lattice. The weakening of the electron-phonon coupling and the excitonic features of the photogenerated carriers in the optimized films, which together contribute to the enhancement of carrier separation and transportation, are further confirmed. Finally the resultant perovskite films in fully operating solar cells with champion efficiency of 23.32% are validated and a minimum voltage deficit of 0.39 V is realized. Polycrystalline halide perovskites are of enormous excitement to be applied in highly efficient solar cells, [1-3] light-emitting diodes, [4] lasers, [5,6] and high-sensitivity photodetectors [7,8] due to their low fabricating costs [9,10] and excellent optoelectronic properties. [11] In order for these optoelectronic devices to access their theoretical performance limits, key metrics
Defects at the bulk grain boundaries and heterojunction interfaces could dictate the power losses of perovskite solar cells (PSCs) during the operation process, which are regarded as major roadblocks towards...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.