SummaryBackgroundIn 2011, WHO member states signed up to the 25 × 25 initiative, a plan to cut mortality due to non-communicable diseases by 25% by 2025. However, socioeconomic factors influencing non-communicable diseases have not been included in the plan. In this study, we aimed to compare the contribution of socioeconomic status to mortality and years-of-life-lost with that of the 25 × 25 conventional risk factors.MethodsWe did a multicohort study and meta-analysis with individual-level data from 48 independent prospective cohort studies with information about socioeconomic status, indexed by occupational position, 25 × 25 risk factors (high alcohol intake, physical inactivity, current smoking, hypertension, diabetes, and obesity), and mortality, for a total population of 1 751 479 (54% women) from seven high-income WHO member countries. We estimated the association of socioeconomic status and the 25 × 25 risk factors with all-cause mortality and cause-specific mortality by calculating minimally adjusted and mutually adjusted hazard ratios [HR] and 95% CIs. We also estimated the population attributable fraction and the years of life lost due to suboptimal risk factors.FindingsDuring 26·6 million person-years at risk (mean follow-up 13·3 years [SD 6·4 years]), 310 277 participants died. HR for the 25 × 25 risk factors and mortality varied between 1·04 (95% CI 0·98–1·11) for obesity in men and 2 ·17 (2·06–2·29) for current smoking in men. Participants with low socioeconomic status had greater mortality compared with those with high socioeconomic status (HR 1·42, 95% CI 1·38–1·45 for men; 1·34, 1·28–1·39 for women); this association remained significant in mutually adjusted models that included the 25 × 25 factors (HR 1·26, 1·21–1·32, men and women combined). The population attributable fraction was highest for smoking, followed by physical inactivity then socioeconomic status. Low socioeconomic status was associated with a 2·1-year reduction in life expectancy between ages 40 and 85 years, the corresponding years-of-life-lost were 0·5 years for high alcohol intake, 0·7 years for obesity, 3·9 years for diabetes, 1·6 years for hypertension, 2·4 years for physical inactivity, and 4·8 years for current smoking.InterpretationSocioeconomic circumstances, in addition to the 25 × 25 factors, should be targeted by local and global health strategies and health risk surveillance to reduce mortality.FundingEuropean Commission, Swiss State Secretariat for Education, Swiss National Science Foundation, the Medical Research Council, NordForsk, Portuguese Foundation for Science and Technology.
The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health.
The incremental value of polygenic risk scores in addition to well-established risk prediction models for coronary artery disease (CAD) is uncertain.OBJECTIVE To examine whether a polygenic risk score for CAD improves risk prediction beyond pooled cohort equations. DESIGN, SETTING, AND PARTICIPANTSObservational study of UK Biobank participants enrolled from 2006 to 2010. A case-control sample of 15 947 prevalent CAD cases and equal number of age and sex frequency-matched controls was used to optimize the predictive performance of a polygenic risk score for CAD based on summary statistics from published genome-wide association studies. A separate cohort of 352 660 individuals (with follow-up to 2017) was used to evaluate the predictive accuracy of the polygenic risk score, pooled cohort equations, and both combined for incident CAD.EXPOSURES Polygenic risk score for CAD, pooled cohort equations, and both combined.MAIN OUTCOMES AND MEASURES CAD (myocardial infarction and its related sequelae). Discrimination, calibration, and reclassification using a risk threshold of 7.5% were assessed. RESULTSIn the cohort of 352 660 participants (mean age, 55.9 years; 205 297 women [58.2%]) used to evaluate the predictive accuracy of the examined models, there were 6272 incident CAD events over a median of 8 years of follow-up. CAD discrimination for polygenic risk score, pooled cohort equations, and both combined resulted in C statistics of 0.61 (95% CI, 0.60 to 0.62), 0.76 (95% CI, 0.75 to 0.77), and 0.78 (95% CI, 0.77 to 0.79), respectively. The change in C statistic between the latter 2 models was 0.02 (95% CI, 0.01 to 0.03). Calibration of the models showed overestimation of risk by pooled cohort equations, which was corrected after recalibration. Using a risk threshold of 7.5%, addition of the polygenic risk score to pooled cohort equations resulted in a net reclassification improvement of 4.4% (95% CI, 3.5% to 5.3%) for cases and −0.4% (95% CI, −0.5% to −0.4%) for noncases (overall net reclassification improvement, 4.0% [95% CI, 3.1% to 4.9%]). CONCLUSIONS AND RELEVANCEThe addition of a polygenic risk score for CAD to pooled cohort equations was associated with a statistically significant, yet modest, improvement in the predictive accuracy for incident CAD and improved risk stratification for only a small proportion of individuals. The use of genetic information over the pooled cohort equations model warrants further investigation before clinical implementation.
Several studies have recently identified strong epigenetic signals related to tobacco smoking. However, an aspect that did not receive much attention is the evolution of epigenetic changes with time since smoking cessation. We conducted a series of epigenome-wide association studies to capture the dynamics of smoking-induced epigenetic changes after smoking cessation, using genome-wide methylation profiles obtained from blood samples in 745 women from 2 European populations. Two distinct classes of CpG sites were identified: sites whose methylation reverts to levels typical of never smokers within decades after smoking cessation, and sites remaining differentially methylated, even more than 35 years after smoking cessation. Our results suggest that the dynamics of methylation changes following smoking cessation are driven by a differential and site-specific magnitude of the smoking-induced alterations (with persistent sites being most affected) irrespective of the intensity and duration of smoking. Analyses of the link between methylation and expression levels revealed that methylation predominantly and remotely down-regulates gene expression. Among genes whose expression was associated with our candidate CpG sites, LRRN3 appeared to be particularly interesting as it was one of the few genes whose methylation and expression were directly associated, and the only gene in which both methylation and gene expression were found associated with smoking. Our study highlights persistent epigenetic markers of smoking, which can potentially be detected decades after cessation. Such historical signatures are promising biomarkers to refine individual risk profiling of smoking-induced chronic disease such as lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.