Oculodentodigital dysplasia (ODDD) is an autosomal dominant disorder characterized by pleiotropic developmental anomalies of the limbs, teeth, face and eyes that was shown recently to be caused by mutations in the gap junction protein alpha 1 gene (GJA1), encoding connexin 43 (Cx43). In the course of performing an Nethyl-N-nitrosourea mutagenesis screen, we identified a dominant mouse mutation that exhibits many classic symptoms of ODDD, including syndactyly, enamel hypoplasia, craniofacial anomalies and cardiac dysfunction. Positional cloning revealed that these mice carry a point mutation in Gja1 leading to the substitution of a highly conserved amino acid (G60S) in Cx43. In vivo and in vitro studies revealed that the mutant Cx43 protein acts in a dominant-negative fashion to disrupt gap junction assembly and function. In addition to the classic features of ODDD, these mutant mice also showed decreased bone mass and mechanical strength, as well as altered hematopoietic stem cell and progenitor populations. Thus, these mice represent an experimental model with which to explore the clinical manifestations of ODDD and to evaluate potential intervention strategies.
Macrophages are activated in inflammation and during early phases of repair processes. Interestingly, they are also present in bone during development, but their function during this process is unclear. Here, we explore the function of macrophages in bone development, growth, and repair using transgenic mice to constitutively or conditionally deplete macrophages. Depletion of macrophages led to early skeletal growth retardation and progressive osteoporosis. By 3 months of age, macrophage-deficient mice displayed a 25% reduction in bone mineral density and a 70% reduction in the number of trabecular bone compared to control littermates. Despite depletion of macrophages, functional osteoclasts were still present in bones, lining trabecular bone and the endosteal surface of the cortical bone. Furthermore, ablation of macrophages led to a 60% reduction in the number of bone marrow mesenchymal progenitor cells and a decrease in the ability of these cells to differentiate to osteoblasts. When macrophages were depleted during fracture repair, bone union was impaired. Calluses from macrophage-deficient animals were smaller, and contained less bone and more fibrotic tissue deposition. Taken together, this shows that macrophages are crucial for maintaining bone homeostasis and promoting fracture repair by enhancing the differentiation of mesenchymal progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.