Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patient's urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.
The tight interrelationship between peroxisomes and mitochondria is illustrated by their cooperation in lipid metabolism, antiviral innate immunity and shared use of proteins executing organellar fission. In addition, we previously reported that disruption of peroxisome biogenesis in hepatocytes severely impacts on mitochondrial integrity, primarily damaging the inner membrane. Here we investigated the molecular impairments of the dysfunctional mitochondria in hepatocyte selective Pex5 knockout mice. First, by using blue native electrophoresis and in-gel activity stainings we showed that the respiratory complexes were differentially affected with reduction of complexes I and III and incomplete assembly of complex V, whereas complexes II and IV were normally active. This resulted in impaired oxygen consumption in cultured Pex5(-/-) hepatocytes. Second, mitochondrial DNA was depleted causing an imbalance in the expression of mitochondrial- and nuclear-encoded subunits of the respiratory chain complexes. Third, mitochondrial membranes showed increased permeability and fluidity despite reduced content of the polyunsaturated fatty acid docosahexaenoic acid. Fourth, the affected mitochondria in peroxisome deficient hepatocytes displayed increased oxidative stress. Acute deletion of PEX5 in vivo using adeno-Cre virus phenocopied these effects, indicating that mitochondrial perturbations closely follow the loss of functional peroxisomes in time. Likely to compensate for the functional impairments, the volume of the mitochondrial compartment was increased several folds. This was not driven by PGC-1α but mediated by activation of PPARα, possibly through c-myc overexpression. In conclusion, loss of peroxisomal metabolism in hepatocytes perturbs the mitochondrial inner membrane, depletes mitochondrial DNA and causes mitochondrial biogenesis independent of PGC-1α.
Reproductive life span and fertility have been shown to depend on successful early folliculogenesis, which involves cell-to-cell communication and the concerted regulation of gene expression at both the oocyte and granulosa cell levels. Recently, micro RNAs (miRNAs) were identified as fine-tuners of gene expression. Here, we report that miRNAs can readily be detected within membrane-enclosed vesicles of human follicular fluid. MiRNA expression profiling of the follicular fluid of younger (<31 years) and older (>38 years) women revealed a set of four differentially expressed miRNAs. The predicted targets of these miRNAs are clearly enriched in genes involved in heparan-sulfate biosynthesis, extracellular matrix-receptor interaction, carbohydrate digestion and absorption, p53 signaling, and cytokine-cytokine-receptor interaction. Several of these pathways have been reported to be determinants of fertility, suggesting that this set of miRNAs and their respective targets should be evaluated in relation to reproductive aging and assisted reproduction.
Defects in the formation of the cerebral cortex and the cerebellum are a prominent feature of the peroxisome biogenesis disorder Zellweger syndrome and in mouse models for this disease. The aim of the present study was to investigate the impact of liver and brain peroxisomes on neurodevelopment by analyzing mice with tissue-selective elimination of peroxisomes. To this end, Pex5-loxP mice were bred with albumin/a-fetoprotein (Alfp)-Cre and nestin (Nes)-Cre mice. Local elimination of peroxisomes from the brain in Nes-Pex5 knockout mice caused a delay of cortical neuronal migration and of the formation of cerebellar folia and fissures. Migration of granule cells from the external granular layer was retarded, as was the polarization and branching of Purkinje cells, resulting in a less complex branching pattern and a smaller dendritic tree at P21. The AlfpPex5 knockout mice were affected differently, displaying a partial arrest of neuronal migration in the cerebral neopallium in the postnatal period despite of the incomplete elimination of peroxisomes from liver during embryonic development. Major abnormalities were seen in the formation of the cerebellum of these liver knockout mice, including hypotrophy, impaired foliation, a delay of granule cell migration, increased cell death, and stunted Purkinje cell arborization. In conclusion, these data demonstrate that absence of peroxisomal function both from liver and brain impairs cortical neuronal migration and maturation of the cerebellum, but different pathogenic mechanisms might be involved.
Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.