Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the COVID-19 pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. While the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of population dynamics.
International audienceThe aim of the SI-Hex project (acronym for « Sismicité Instrumentale de l’Hexagone ») is to provide a catalogue of seismicity for metropolitan France and the French marine economic zone for the period 1962–2009 by taking into account the contributions of the various seismological networks and observatories from France and its neighbouring countries. The project has been launched jointly by the Bureau Central Sismologique Français (CNRS-University/BCSF) and the Laboratoire de Détection et de Géophysique (CEA-DAM/LDG). One of the main motivations of the project is to provide the end user with the best possible information on location and magnitude of each earthquake. So far, due to the various procedures in use in the observatories, the different locations and magnitudes of earthquakes located in the SI-Hex zone were presenting large discrepancies. In the 2014 version of the catalogue, 1D localizations of hypocentres performed with a unique computational scheme and covering the whole 1962–2009 period constitute the backbone of the catalogue (SI-Hex solutions). When available, they are replaced by more precise localizations made at LDG or, for recent times, by the regional observatories within: 1) the French Alps, 2) the southernmost Alps and the Mediterranean domain including Corsica, 3) the Pyrenees, and 4) the Armorican massif. Moment magnitudes Mw are systematically reported in the SI-Hex catalogue. They are computed from coda-wave analysis of the LDG records for most Mw>3.4 events, and are converted from local magnitudes ML for smaller magnitude events. Finally, special attention is paid to the question of discrimination between natural and artificial seismic events in order to produce a catalogue for direct use in seismic hazard analysis and seismotectonic investigations. The SI-Hex catalogue is accessible on the web site www.franceseisme.fr and contains 38,027 earthquake hypocentres, together with their seismic moment magnitudes Mw
Summary The brutal onset of seismicity offshore Mayotte island North of the Mozambique Channel, Indian Ocean, that occurred in May 2018 caught the population, authorities, and scientific community off guard. Around 20 potentially felt earthquakes were recorded in the first 5 days, up to magnitude Mw 5.9. The scientific community had little pre-existing knowledge of the seismic activity in the region due to poor seismic network coverage. During 2018 and 2019, the MAYOBS/REVOSIMA seismology group was progressively built between four French research institutions to improve instrumentation and data sets to monitor what we know now as an on-going exceptional sub-marine basaltic eruption. After the addition of 3 medium-band stations on Mayotte island and 1 on Grande Glorieuse island in early 2019, the data recovered from the Ocean Bottom Seismometers were regularly processed by the group to improve the location of the earthquakes detected daily by the land network. We first built a new local 1D velocity model and established specific data processing procedures. The local 1.66 low VP/VS ratio we estimated is compatible with a volcanic island context. We manually picked about 125,000 P and S phases on land and sea bottom stations to locate more than 5,000 events between February 2019 and May 2020. The earthquakes outline two separate seismic clusters offshore that we named Proximal and Distal. The Proximal cluster, located 10km offshore Mayotte eastern coastlines, is 20 to 50 km deep and has a cylindrical shape. The Distal cluster start 5 km to the east of the Proximal cluster and extends below Mayotte's new volcanic edifice, from 50 km up to 25 km depth. The two clusters appear seismically separated, however our dataset is insufficient to firmly demonstrate this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.