Kruppel-like factor 6 (KLF6) is a zinc finger transcription factor of unknown function. Here, we show that the KLF6 gene is mutated in a subset of human prostate cancer. Loss-of-heterozygosity analysis revealed that one KLF6 allele is deleted in 77% (17 of 22) of primary prostate tumors. Sequence analysis of the retained KLF6 allele revealed mutations in 71% of these tumors. Functional studies confirm that whereas wild-type KLF6 up-regulates p21 (WAF1/CIP1) in a p53-independent manner and significantly reduces cell proliferation, tumor-derived KLF6 mutants do not. Our data suggest that KLF6 is a tumor suppressor gene involved in human prostate cancer.
Neurofibrillary tangles, composed of insoluble aggregates of the microtubule-associated protein Tau, are a pathological hallmark of Alzheimer disease (AD) and other tauopathies. However, recent evidence indicates that neuronal dysfunction precedes the formation of these insoluble fibrillar deposits, suggesting that earlier prefibrillar Tau aggregates may be neurotoxic. To determine the composition of these aggregates, we have employed a photochemical cross-linking technique to examine intermolecular interactions of full-length Tau in vitro. Using this method, we demonstrate that dimerization is an early event in the Tau aggregation process and that these dimers selfassociate to form larger oligomeric aggregates. Moreover, using these stabilized Tau aggregates as immunogens, we generated a monoclonal antibody that selectively recognizes Tau dimers and higher order oligomeric aggregates but shows little reactivity to Tau filaments in vitro. Immunostaining indicates that these dimers/oligomers are markedly elevated in AD, appearing in early pathological inclusions such as neuropil threads and pretangle neurons as well as colocalizing with other early markers of Tau pathogenesis. Taken as a whole, the work presented herein demonstrates the existence of alternative Tau aggregates that precede formation of fibrillar Tau pathologies and raises the possibility that these hierarchical oligomeric forms of Tau may contribute to neurodegeneration.
May-Hegglin anomaly (MHA) and Fechtner (FTNS) and Sebastian (SBS) syndromes are autosomal dominant platelet disorders that share macrothrombocytopenia and characteristic leukocyte inclusions. FTNS has the additional clinical features of nephritis, deafness, and cataracts. Previously, mutations in the nonmuscle myosin heavy chain 9 gene (MYH9), which encodes nonmuscle myosin heavy chain IIA (MYHIIA), were identified in all three disorders. The spectrum of mutations and the genotype-phenotype and structure-function relationships in a large cohort of affected individuals (n=27) has now been examined. Moreover, it is demonstrated that MYH9 mutations also result in two other FTNS-like macrothrombocytopenia syndromes: Epstein syndrome (EPS) and Alport syndrome with macrothrombocytopenia (APSM). In all five disorders, MYH9 mutations were identified in 20/27 (74%) affected individuals. Four mutations, R702C, D1424N, E1841K, and R1933X, were most frequent. R702C and R702H mutations were only associated with FTNS, EPS, or APSM, thus defining a region of MYHIIA critical in the combined pathogenesis of macrothrombocytopenia, nephritis, and deafness. The E1841K, D1424N, and R1933X coiled-coil domain mutations were common to both MHA and FTNS. Haplotype analysis using three novel microsatellite markers revealed that three E1841K carriers--one with MHA and two with FTNS--shared a common haplotype around the MYH9 gene, suggesting a common ancestor. The two new globular-head mutations, K371N and R702H, as well as the recently identified MYH9 mutation, R705H, which results in DFNA17, were modeled on the basis of X-ray crystallographic data. Altogether, our data suggest that MHA, SBS, FTNS, EPS, and APSM comprise a phenotypic spectrum of disorders, all caused by MYH9 mutations. On the basis of our genetic analyses, the name "MYHIIA syndrome" is proposed to encompass all of these disorders.
The inherited osteolyses or 'vanishing bone' syndromes are a group of rare disorders of unknown etiology characterized by destruction and resorption of affected bones. The multicentric osteolyses are notable for interphalangeal joint erosions that mimic severe juvenile rheumatoid arthritis (OMIMs 166300, 259600, 259610 and 277950). We recently described an autosomal recessive form of multicentric osteolysis with carpal and tarsal resorption, crippling arthritic changes, marked osteoporosis, palmar and plantar subcutaneous nodules and distinctive facies in a number of consanguineous Saudi Arabian families. We localized the disease gene to 16q12-21 by using members of these families for a genome-wide search for homozygous-by-descent microsatellite markers. Haplotype analysis narrowed the critical region to a 1.2-cM region that spans the gene encoding MMP-2 (gelatinase A, collagenase type IV; (ref. 3). We detected no MMP2 enzymatic activity in the serum or fibroblasts of affected family members. We identified two family-specific homoallelic MMP2 mutations: R101H and Y244X. The nonsense mutation effects a deletion of the substrate-binding and catalytic sites and the fibronectin type II-like and hemopexin/TIMP2 binding domains. Based on molecular modeling, the missense mutation disrupts hydrogen bond formation within the highly conserved prodomain adjacent to the catalytic zinc ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.