Background: The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity.Objective: We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. Methods: Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4 1 T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its
Plasmacytoid dendritic cells (pDCs) express the I-type lectin receptor Siglec-H and produce interferon α (IFNα), a critical anti-viral cytokine during the acute phase of murine cytomegalovirus (MCMV) infection. The ligands and biological functions of Siglec-H still remain incompletely defined in vivo. Thus, we generated a novel bacterial artificial chromosome (BAC)-transgenic “pDCre” mouse which expresses Cre recombinase under the control of the Siglec-H promoter. By crossing these mice with a Rosa26 reporter strain, a representative fraction of Siglec-H+ pDCs is terminally labeled with red fluorescent protein (RFP). Interestingly, systemic MCMV infection of these mice causes the downregulation of Siglec-H surface expression. This decline occurs in a TLR9- and MyD88-dependent manner. To elucidate the functional role of Siglec-H during MCMV infection, we utilized a novel Siglec-H deficient mouse strain. In the absence of Siglec-H, the low infection rate of pDCs with MCMV remained unchanged, and pDC activation was still intact. Strikingly, Siglec-H deficiency induced a significant increase in serum IFNα levels following systemic MCMV infection. Although Siglec-H modulates anti-viral IFNα production, the control of viral replication was unchanged in vivo. The novel mouse models will be valuable to shed further light on pDC biology in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.