PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 −/− HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 −/− HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigenexpressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.
ObjectiveWe previously reported a characterisation of the hepatocellular carcinoma (HCC) immune contexture and described an immune-specific class. We now aim to further delineate the immunogenomic classification of HCC to incorporate features that explain responses/resistance to immunotherapy.DesignWe performed RNA and whole-exome sequencing, T-cell receptor (TCR)-sequencing, multiplex immunofluorescence and immunohistochemistry in a novel cohort of 240 HCC patients and validated our results in other cohorts comprising 660 patients.ResultsOur integrative analysis led to define: (1) the inflamed class of HCC (37%), which includes the previously reported immune subclass (22%) and a new immune-like subclass (15%) with high interferon signalling, cytolytic activity, expression of immune-effector cytokines and a more diverse T-cell repertoire. A 20-gene signature was able to capture ~90% of these tumours and is associated with response to immunotherapy. Proteins identified in liquid biopsies recapitulated the inflamed class with an area under the ROC curve (AUC) of 0.91; (2) The intermediate class, enriched in TP53 mutations (49% vs 29%, p=0.035), and chromosomal losses involving immune-related genes and; (3) the excluded class, enriched in CTNNB1 mutations (93% vs 27%, p<0.001) and PTK2 overexpression due to gene amplification and promoter hypomethylation. CTNNB1 mutations outside the excluded class led to weak activation of the Wnt-βcatenin pathway or occurred in HCCs dominated by high interferon signalling and type I antigen presenting genes.ConclusionWe have characterised the immunogenomic contexture of HCC and defined inflamed and non-inflamed tumours. Two distinct CTNNB1 patterns associated with a differential role in immune evasion are described. These features may help predict immune response in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.