Introduction: The International Working Group recommended the Free and Cued Selective Reminding Test (FCSRT) as a sensitive detector of the amnesic syndrome of the hippocampal type in typical Alzheimer's disease (AD). But does it differentiate AD from other neurodegenerative diseases? Methods: We assessed the FCSRT and cerebrospinal fluid (CSF) AD biomarkers in 992 cases. Experts, blinded to biomarker data, attributed in 650 cases a diagnosis of typical AD, frontotemporal dementia, posterior cortical atrophy, Lewy body disease, progressive supranuclear palsy, corticobasal syndrome, primary progressive aphasias, "subjective cognitive decline," or depression.Results: The FCSRT distinguished typical AD from all other conditions with a sensitivity of 100% and a specificity of 75%. Non-AD neurodegenerative diseases with positive AD CSF biomarkers ("atypical AD") did not have lower FCSRT scores than those with negative biomarkers. Discussion: The FCSRT is a reliable tool for diagnosing typical AD among various neurodegenerative diseases. At an individual level, however, its specificity is not absolute. Our findings also widen the spectrum of atypical AD to multiple neurodegenerative conditions.
To better understand the energetic status of proliferating cells, we have measured the intracellular pH (pHi) and concentrations of key metabolites, such as adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), and nicotinamide adenine dinucleotide phosphate (NADP) in normal and cancer cells, extracted from fresh human colon tissues. Cells were sorted by elutriation and segregated in different phases of the cell cycle (G0/G1/S/G2/M) in order to study their redox (NAD, NADP) and bioenergetic (ATP, pHi) status. Our results show that the average ATP concentration over the cell cycle is higher and the pHi is globally more acidic in normal proliferating cells. The NAD+/NADH and NADP+/NADPH redox ratios are, respectively, five times and ten times higher in cancer cells compared to the normal cell population. These energetic differences in normal and cancer cells may explain the well-described mechanisms behind the Warburg effect. Oscillations in ATP concentration, pHi, NAD+/NADH, and NADP+/NADPH ratios over one cell cycle are reported and the hypothesis addressed. We also investigated the mitochondrial membrane potential (MMP) of human and mice normal and cancer cell lines. A drastic decrease of the MMP is reported in cancer cell lines compared to their normal counterparts. Altogether, these results strongly support the high throughput aerobic glycolysis, or Warburg effect, observed in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.