The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria.
Xanthan is the major exopolysaccharide secreted by Xanthomonas spp. Despite its diverse roles in bacterial pathogenesis of plants, little is known about the real implication of this molecule in Xanthomonas pathogenesis. In this study we show that in contrast to Xanthomonas campestris pv campestris strain 8004 (wild type), the xanthan minus mutant (strain 8397) and the mutant strain 8396, which is producing truncated xanthan, fail to cause disease in both Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana) plants. In contrast to wild type, 8397 and 8396 strains induce callose deposition in N. benthamiana and Arabidopsis plants. Interestingly, treatment with xanthan but not truncated xanthan, suppresses the accumulation of callose and enhances the susceptibility of both N. benthamiana and Arabidopsis plants to 8397 and 8396 mutant strains. Finally, in concordance, we also show that treatment with an inhibitor of callose deposition previous to infection induces susceptibility to 8397 and 8396 strains. Thus, xanthan suppression effect on callose deposition seems to be important for Xanthomonas infectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.