The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods.T he extreme biological diversity of tropical forests has inspired and puzzled naturalists and scientists for centuries, and the forest refuge hypothesis (FRH) has long been one of the major paradigms to explain it. According to the FRH, forest retraction and fragmentation during glacial periods would have promoted isolation and consequently allopatric speciation in forest patches, or ecological refuges, surrounded by open habitats in the Amazon (1). Although originally based on climate fluctuations in the Pleistocene, the FRH was subsequently invoked for climate changes irrespective of the time period (2). The FRH was also applied to South America's Atlantic Forest (3), one of the topfive biodiversity hotspots on Earth (4). The FRH gained broad acceptance during the 1980s when empirical paleoecological data from neotropical rainforests were still lacking. Nevertheless, heavy criticism came upon the FRH because some paleobotanical data showed that forests had persisted throughout glacial cycles (5). As paleoclimatic models of species and habitats became widely used, recent studies revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity and endemism are associated with historically stable Atlantic Forest areas (6).This hypothesis is ba...
Background Callithrix marmosets are a relatively young primate radiation, whose phylogeny is not yet fully resolved. These primates are naturally para- and allopatric, but three species with highly invasive potential have been introduced into the southeastern Brazilian Atlantic Forest by the pet trade. There, these species hybridize with each other and endangered, native congeners. We aimed here to reconstruct a robust Callithrix phylogeny and divergence time estimates, and identify the biogeographic origins of autochthonous and allochthonous Callithrix mitogenome lineages. We sequenced 49 mitogenomes from four species (C. aurita, C. geoffroyi, C. jacchus, C. penicillata) and anthropogenic hybrids (C. aurita x Callithrix sp., C. penicillata x C. jacchus, Callithrix sp. x Callithrix sp., C. penicillata x C. geoffroyi) via Sanger and whole genome sequencing. We combined these data with previously published Callithrix mitogenomes to analyze five Callithrix species in total. Results We report the complete sequence and organization of the C. aurita mitogenome. Phylogenetic analyses showed that C. aurita was the first to diverge within Callithrix 3.54 million years ago (Ma), while C. jacchus and C. penicillata lineages diverged most recently 0.5 Ma as sister clades. MtDNA clades of C. aurita, C. geoffroyi, and C. penicillata show intraspecific geographic structure, but C. penicillata clades appear polyphyletic. Hybrids, which were identified by phenotype, possessed mainly C. penicillata or C. jacchus mtDNA haplotypes. The biogeographic origins of mtDNA haplotypes from hybrid and allochthonous Callithrix were broadly distributed across natural Callithrix ranges. Our phylogenetic results also evidence introgression of C. jacchus mtDNA into C. aurita. Conclusion Our robust Callithrix mitogenome phylogeny shows C. aurita lineages as basal and C. jacchus lineages among the most recent within Callithrix. We provide the first evidence that parental mtDNA lineages of anthropogenic hybrid and allochthonous marmosets are broadly distributed inside and outside of the Atlantic Forest. We also show evidence of cryptic hybridization between allochthonous Callithrix and autochthonous C. aurita. Our results encouragingly show that further development of genomic resources will allow to more clearly elucidate Callithrix evolutionary relationships and understand the dynamics of Callithrix anthropogenic introductions into the Brazilian Atlantic Forest.
Niche conservatism, i.e. the retention of a species' fundamental niche through evolutionary time, is cornerstone for biological invasion assessments. The fact that species tend to maintain their original climate niche allows predictive maps of invasion risk to anticipate potential invadable areas. Unravelling the mechanisms driving niche shifts can shed light on the management of invasive species. Here, we assessed niche shifts in one of the world's worst invasive species: the wild boar Sus scrofa. We also predicted potential invadable areas based on an ensemble of three ecological niche modelling methods, and evaluated the performance of models calibrated with native vs. pooled (native plus invaded) species records. By disentangling the drivers of change on the exotic wild boar population's niches, we found strong evidence for niche conservatism during biological invasion. Ecological niche models calibrated with both native and pooled range records predicted convergent areas. Also, observed niche shifts are mostly explained by niche unfilling, i.e. there are unoccupied areas in the exotic range where climate is analogous to the native range. Niche unfilling is expected as result of recent colonization and ongoing dispersal, and was potentially stronger for the Neotropics, where a recent wave of introductions for pig-farming and game-hunting has led to high wild boar population growth rates. The invasive potential of wild boar in the Neotropics is probably higher than in other regions, which has profound management implications if we are to prevent their invasion into species-rich areas, such as Amazonia, coupled with expansion of African swine fever and possibly great economic losses. Although the originally Eurasian-wide distribution suggests a pre-adaptation to a wide array of climates, the wild boar world-wide invasion does not exhibit evidence of niche evolution. The invasive potential of the wild boar therefore probably lies on the reproductive, dietary and morphological characteristics of this species, coupled with behavioural thermoregulation.
Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.