Autosomal-dominant sensorineural hearing loss is genetically heterogeneous, with a phenotype closely resembling presbycusis, the most common sensory defect associated with aging in humans. We have identified SLC17A8, which encodes the vesicular glutamate transporter-3 (VGLUT3), as the gene responsible for DFNA25, an autosomal-dominant form of progressive, high-frequency nonsyndromic deafness. In two unrelated families, a heterozygous missense mutation, c.632C-->T (p.A211V), was found to segregate with DFNA25 deafness and was not present in 267 controls. Linkage-disequilibrium analysis suggested that the families have a distant common ancestor. The A211 residue is conserved in VGLUT3 across species and in all human VGLUT subtypes (VGLUT1-3), suggesting an important functional role. In the cochlea, VGLUT3 accumulates glutamate in the synaptic vesicles of the sensory inner hair cells (IHCs) before releasing it onto receptors of auditory-nerve terminals. Null mice with a targeted deletion of Slc17a8 exon 2 lacked auditory-nerve responses to acoustic stimuli, although auditory brainstem responses could be elicited by electrical stimuli, and robust otoacoustic emissions were recorded. Ca(2+)-triggered synaptic-vesicle turnover was normal in IHCs of Slc17a8 null mice when probed by membrane capacitance measurements at 2 weeks of age. Later, the number of afferent synapses, spiral ganglion neurons, and lateral efferent endings below sensory IHCs declined. Ribbon synapses remaining by 3 months of age had a normal ultrastructural appearance. We conclude that deafness in Slc17a8-deficient mice is due to a specific defect of vesicular glutamate uptake and release and that VGLUT3 is essential for auditory coding at the IHC synapse.
Non-syndromic low frequency sensorineural hearing loss (LFSNHL) affecting only 2000 Hz and below is an unusual type of hearing loss that worsens over time without progressing to profound deafness. This type of LFSNHL may be associated with mild tinnitus but is not associated with vertigo. We have previously reported two families with autosomal dominant LFSNHL linked to adjacent but non-overlapping loci on 4p16, DFNA6 and DFNA14. However, further study revealed that an individual with LFSNHL in the DFNA6 family who had a recombination event that excluded the DFNA14 candidate region was actually a phenocopy, and consequently, DFNA6 and DFNA14 are allelic. LFSNHL appears to be genetically nearly homogeneous, as only one LFSNHL family is known to map to a different chromosome (DFNA1). The DFNA6/14 critical region includes WFS1, the gene responsible for Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy, and often, deafness. Herein we report five different heterozygous missense mutations (T699M, A716T, V779M, L829P, G831D) in the WFS1 gene found in six LFSNHL families. Mutations in WFS1 were identified in all LFSNHL families tested, with A716T arising independently in two families. None of the mutations was found in at least 220 control chromosomes with the exception of V779M, which was identified in 1/336 controls. This frequency is consistent with the prevalence of heterozygous carriers for Wolfram syndrome estimated at 0.3-1%. An increased risk of sensorineural hearing loss has been reported in such carriers. Therefore, we conclude that mutations in WFS1 are a common cause of LFSNHL.
WFS1 is a novel gene and encodes an 890 amino-acid glycoprotein (wolframin), predominantly localized in the endoplasmic reticulum. Mutations in WFS1 underlie autosomal recessive Wolfram syndrome and autosomal dominant low frequency sensorineural hearing impairment (LFSNHI) DFNA6/14. In addition, several WFS1 sequence variants have been shown to be significantly associated with diabetes mellitus and this gene has also been implicated in psychiatric diseases. Wolfram syndrome is highly variable in its clinical manifestations, which include diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Wolfram syndrome mutations are spread over the entire coding region, and are typically inactivating, suggesting that a loss of function causes the disease phenotype. In contrast, only non-inactivating mutations have been found in DFNA6/14 families, and these mutations are mainly located in the C-terminal protein domain. In this paper, we provide an overview of the currently known disease-causing and benign allele variants of WFS1 and propose a potential genotype-phenotype correlation for Wolfram syndrome and LFSNHI.
The human cytomegalovirus UL37 exon 1 gene encodes the immediate early protein pUL37x1 that has antiapoptotic and regulatory activities. Deletion mutagenesis analysis of the open reading frame of UL37x1 identified two domains that are necessary and sufficient for its antiapoptotic activity. These domains are confined within the segments between amino acids 5 to 34, and 118 to 147, respectively. The first domain provides the targeting of the protein to mitochondria. Direct PCR sequencing of UL37 exon 1 amplified from 26 primary strains of human cytomegalovirus demonstrated that the promoter, polyadenylation signal, and the two segments of pUL37x1 required for its antiapoptotic function were invariant in all sequenced strains and identical to those in AD169 pUL37x1. In total, UL37 exon 1 varies between 0.0 and 1.6% at the nucleotide level from strain AD169. Only 11 amino acids were found to vary in one or more viral strains, and these variations occurred only in the domains of pUL37x1 dispensable for its antiapoptotic function. We infer from this remarkable conservation of pUL37x1 in primary strains that this protein and, probably, its antiapoptotic function are required for productive replication of human cytomegalovirus in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.