We carried out a genome-wide association study of lung cancer (3,259 cases and 4,159 controls), followed by replication in 2,899 cases and 5,573 controls. Two uncorrelated disease markers at 5p15.33, rs402710 and rs2736100 were detected by the genome-wide data (P = 2 × 10 -7 and P = 4 × 10 -6 ) and replicated by the independent study series (P = 7 × 10 -5 and P = 0.016). The susceptibility region contains two genes, TERT and CLPTM1L, suggesting that one or both may have a role in lung cancer etiology.We and others have recently reported a susceptibility locus for lung cancer in gene region 15q25, an area that includes a cluster of nicotinic acetylcholine receptor genes [1][2][3] . In order to identify further susceptibility gene loci, we genotyped an additional 1,291 cases and 1,561 controls from three further studies (Toronto case-control study,
We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants of BRCA2-K3326X (rs11571833; odds ratio [OR]=2.47, P=4.74×10−20) and of CHEK2-I157T (rs17879961; OR=0.38 P=1.27×10−13). We also showed an association between common variation at 3q28 (TP63; rs13314271; OR=1.13, P=7.22×10−10) and lung adenocarcinoma previously only reported in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants having substantive effects on cancer risk from pre-existing GWAS data.
Several moderate- and high-risk breast cancer susceptibility genes have been discovered, but more are likely to exist. To discover new breast cancer susceptibility genes, we used 2 populations (from Poland and Quebec, Canada) and applied whole-exome sequencing in a discovery phase (n = 195), followed by validation. We identified rare recurrent RECQL mutations in each population. In Quebec, 7 of 1,013 higher-risk breast cancer cases and 1 of 7,136 newborns carried the c.634C>T (p.Arg215*) variant (P = 0.00004). In Poland, 30 of 13,136 unselected breast cancer cases and 2 of 4,702 controls carried the c.1667_1667+3delAGTA (p.K555delinsMYKLIHYSFR) variant (P = 0.008). RECQL is implicated in resolving stalled DNA replication forks to prevent double-stranded DNA (dsDNA) breaks. This function is related to that of other known breast cancer susceptibility genes, many of which are involved in repairing dsDNA breaks. We conclude that RECQL is a breast cancer susceptibility gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.