We examined clinical aspects of Benign Paroxysmal Vertigo (BPV) in infancy and its most frequent differential diagnosis, in particular analogies and differences with forms of "migrainous vertigo" (MV) of later onset. During a long-term follow-up of 7 cases of BPV, diagnosed according to the Basser criteria, 5 of 7 BPV cases spontaneously resolved and 6 of 7 patients later developed migraine and other migraine-related symptoms. This course differs from that described for MV only in the age of onset of headache and in the chronological relationship with vertigo. The authors suggest that BPV can be interpreted as a migraine precursor and MV as a migraine equivalent.
In response to passive high-acceleration head impulses, patients with low vestibulo-ocular reflex (VOR) gains often produce covert (executed while the head is still moving) corrective saccades in the direction of deficient slow phases. Here we examined 23 patients using passive, and 9 also active, head impulses with acute (< 10 days from onset) unilateral vestibular neuritis and low VOR gains. We found that when corrective saccades are larger than 10°, the slow-phase component of the VOR is inhibited, even though inhibition increases further the time to reacquire the fixation target. We also found that ) saccades are faster and more accurate if the residual VOR gain is higher,) saccades also compensate for the head displacement that occurs during the saccade, and ) the amplitude-peak velocity relationship of the larger corrective saccades deviates from that of head-fixed saccades of the same size. We propose a mathematical model to account for these findings hypothesizing that covert saccades are driven by a desired gaze position signal based on a prediction of head displacement using vestibular and extravestibular signals, covert saccades are controlled by a gaze feedback loop, and the VOR command is modulated according to predicted saccade amplitude. A central and novel feature of the model is that the brain develops two separate estimates of head rotation, one for generating saccades while the head is moving and the other for generating slow phases. Furthermore, while the model was developed for gaze-stabilizing behavior during passively induced head impulses, it also simulates both active gaze-stabilizing and active gaze-shifting eye movements. During active or passive head impulses while fixating stationary targets, low vestibulo-ocular gain subjects produce corrective saccades when the head is still moving. The mechanisms driving these covert saccades are poorly understood. We propose a mathematical model showing that the brain develops two separate estimates of head rotation: a lower level one, presumably in the vestibular nuclei, used to generate the slow-phase component of the response, and a higher level one, within a gaze feedback loop, used to drive corrective saccades.
Neurophysiological measurements of the vestibular function for diagnosis and follow-up evaluations provide an objective assessment, which, unfortunately, does not necessarily correlate with the patients’ self-feeling. The literature provides many questionnaires to assess the outcome of rehabilitation programs for disequilibrium, but only for the Dizziness Handicap Inventory (DHI) is an Italian translation available, validated on a small group of patients suffering from a peripheral acute vertigo. We translated and validated the reliability and validity of the DHI, the Situational Vertigo Questionnaire (SVQ), and the Activities-Specific Balance Confidence Scale (ABC) in 316 Italian patients complaining of dizziness due either to a peripheral or to a central vestibular deficit, or in whom vestibular signs were undetectable by means of instrumental testing or clinical evaluation. Cronbach’s coefficient alpha, the homogeneity index, and test–retest reproducibility, confirmed reliability of the Italian version of the three questionnaires. Validity was confirmed by correlation test between questionnaire scores. Correlations with clinical variables suggested that they can be used as a complementary tool for the assessment of vestibular symptoms. In conclusion, the Italian versions of DHI, SVQ, and ABC are reliable and valid questionnaires for assessing the impact of dizziness on the quality of life of Italian patients with peripheral or central vestibular deficit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.