Dealumination of NH(4)-Y zeolite during steaming to 873 K was investigated with in situ, time-dependent, synchrotron radiation XRPD and in situ Al K-edge XAS. Water desorption is complete at 450 K, and ammonium decomposition occurs between 500 and 550 K. Only a small fraction of Al(3+) species (5%) leaves the framework during heating from 710 to 873 K; these species occupy site I' inside the sodalite cage. This fraction increases up to 8% in the first 50 min at 873 K and remains constant for the following 70 min isotherm and during the high-temperature part of the cooling experiment. During cooling from 500 to 450 K, the electron density at site I' increases suddenly, corresponding to a fraction of 30-35% of the total Al, confirmed by ex situ (27)Al MAS solid-state NMR. At that temperature, in situ Al K-edge XAS indicates a change in Al coordination of a large fraction of Al, and thermogravimetric (TG) data show the first water molecules start to repopulate the pores. Such molecules drive the dislodgment of most of the Al from the zeolitic framework. Our data indicate that considerable structural collapse caused by steaming does not occur at the highest temperature; however, defects form, which lead to significant migration of framework Al(3+) to extraframework positions, which occurs only as water is able to enter the pores again, that is, at much lower temperature. Contrary to general opinion, these results demonstrate that zeolite dealumination is not primarily a high-temperature process. The standard Rietveld refinement approach failed to identify extraframework Al species. These new results were obtained by adopting the innovative parametric refinement [J. Appl. Crystallogr. 2007, 40, 87]. Treating all of the XRPD patterns collected during the evolution of temperature as one unique data set significantly reduces the overall number of optimized variables and, thus, their relative correlation, and finally results in a more reliable estimate of the optimized parameters. Our results contribute to a better understanding of the phenomena involved on the atomic scale in the preparation of ultrastable Y zeolites (USY). USY are employed in fluid catalytic cracking (FCC), which is the most important conversion process in petroleum refineries to convert the high-boiling hydrocarbon fractions of petroleum crude oils to more valuable products like gasoline and olefinic gases.
The crystalline State and isometric Operations 1 Symmetry elements 3 Axes of rotational symmetry 3 Axes of rototranslation or screw axes 5 Axes of inversion 5 Axes of rotorefiection 5 Refiection planes with translational component (glide planes) 6 Lattices 6 The rational properties of lattices 7 Crystallographic directions 7 Crystallographic planes 8 Symmetry restrictions due to the lattice periodicity and vice versa 9 Point groups and symmetry classes 11 Point groups in one and two dimensions 16 The Laue classes 17 The seven crystal Systems 17 The Bravais lattices 18 Plane lattices 18 Space lattices 19 The space groups 22 The plane and line groups 30 On the matrix representation of symmetry Operators 32 Appendices: LA The isometric transformations 35 l.B Some combinations of movements 37 l.C Wigner-Seitz cells 41 l.D The space-group rotation matrices l.E Symmetry groups l.F Symmetry generalization References Crystallographic Computing Carmelo Giacovazzo
The structure of [Fe(Htrz) 2 (trz)]BF 4 (1, Htrz )1,2,4-4-H-triazole, trz ) 1,2,4-triazolate) at the low-spin (LS) and high-spin (HS) states and structural transitions between the two states were investigated by in situ highresolution synchrotron X-ray powder diffraction (XRPD) combined with Raman spectroscopy using a modulation-enhanced technique. The crystal structures of the LS and HS states were determined. A 1D chain structure of 1 at both LS and HS states was proven, and the lattice expansion upon LS-HS transition was mainly caused by the elongation of the chain. The differences in the behavior of the spin transition observed by XRPD and Raman spectroscopy were explained by the local sensitivity of the two different techniques and also by the spatial propagation of spin crossover phase transition within the crystallite and the body of the grain. Moreover, we demonstrated that the two-dimensional correlation analyses facilitate (i) understanding the data obtained by combined techniques, (ii) clarifying correlation between the signals gained by the different probes, and (iii) extracting information on temporal evolution of transformation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.