Several studies demonstrate the benefits of low-power light therapy on wound
healing. However, the use of LED as a therapeutic resource remains
controversial. There are questions regarding the equality or not of biological
effects promoted by LED and LASER. One objective of this review was to determine
the biological effects that support the use of LED on wound healing. Another
objective was to identify LED´s parameters for the treatment of wounds. The
biological effects and parameters of LED will be compared to those of LASER.
Literature was obtained from online databases such as Medline, PubMed, Science
Direct and Scielo. The search was restricted to studies published in English and
Portuguese from 1992 to 2012. Sixty-eight studies in vitro and in animals were
analyzed. LED and LASER promote similar biological effects, such as decrease of
inflammatory cells, increased fibroblast proliferation, stimulation of
angiogenesis, granulation tissue formation and increased synthesis of collagen.
The irradiation parameters are also similar between LED and LASER. The
biological effects are dependent on irradiation parameters, mainly wavelength
and dose. This review elucidates the importance of defining parameters for the
use of light devices.
Photodynamic inhibition was more efficient in promoting cell death than the antifungal cyclopiroxolamine against T. rubrum. ROS, ONOO· and NO· were important in the fungicidal activity of aPI. A suggested mechanism for this activity is that TBO is excited by LED light (630 nm), reacts with biomolecules and increases the availability of transition electrons and substrates for nitric oxide synthase, thereby increasing the oxidative and nitrosative bursts in the fungal cell.
Despite advances in assistive technology, existing prosthetic knees still have some limitations, such as weight, low active and braking torque, and high energy consumption. This paper presents an active magnetorheological knee (AMRK) actuator developed for transfemoral prostheses. The system consists of a motor unit comprising an EC motor, harmonic drive and magnetorheological (MR) clutch. The motor unit provides active motion, working in parallel with an MR brake. With this configuration, the AMRK possesses multiple functions; it can work as a motor, clutch, or brake, reproducing movements similar to those of a healthy knee in different activities. All components of the prosthetic knee are protected to avoid risk of accidents and to provide an aesthetically appropriate structure. To reduce weight, energy consumption and volume, the MR clutch/brake geometric design was optimized using a particle swarm optimization algorithm. A prototype was fabricated and tested to evaluate the AMRK performance. Dynamic models of the MR clutch, MR brake and motor unit were analysed, and torque control was implemented. The results show that the AMRK is promising for the proposed applications, which require multiple functions with compact size, low weight, low energy consumption, high active and braking torque, and quick response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.