Our results indicate that lysates derived from heat-shocked tumor cells are an optimal source of tumor-associated Ags, which are crucial for the generation of DCs with improved Ag cross-presentation capacity and clinically effective immunogenicity.
SummaryDendritic cell (DC)-based therapy has proved to be effective in patients with a variety of malignancies. However, an optimal immunization protocol using DCs and the best means for delivering antigens has not yet been described. In this study, 20 patients with malignant melanoma in stages III or IV were vaccinated with autologous DCs pulsed with a melanoma cell lysate, alone ( n = = = = 13) or in combination with low doses of subcutaneous (s.c.) interleukin (IL)-2 injections ( n = = = = 7), to assess toxicity, immunological and clinical responses. Monocyte-derived DCs were morphological, phenotypic and functionally characterized in vitro . Peripheral blood mononuclear cells (PBMC), harvested from patients either prior to and after the treatment, were analysed using enzyme-linked immunosorbent spot (ELISPOT). After vaccination, 50% of the patients tested (seven of 13) from the first group and (three of seven) from the second, showed an increase in interferon (IFN)-γ γ γ γ production in response to allogeneic melanoma cell lines but not to controls. Four of five tested human leucocyte antigen (HLA)-A2 + + + + patients with anti-melanoma activity also showed specific T cell responses against peptides derived from melanoma-associated antigens. Delayed type IV hypersensitivity reaction (DTH) against melanoma cell lysate was observed in six of 13 patients from the group treated with DC vaccines only and four of seven from the group treated with the combination of DCs and IL-2. Significant correlations were found between DTH-positive responses against tumour lysate and both disease stability and post-vaccination survival on the stage IV patients. There were no toxicities associated with the vaccines or evidence of autoimmunity including vitiligo. Furthermore, no significant enhancement was observed as a result of combining DC vaccination with IL-2. Our data suggest that autologous DCs pulsed with tumour lysate may provide a standardized and widely applicable source of melanoma specific antigens for clinical use. It is safe and causes no significant side effects and has been demonstrated to be partially efficient at triggering effective anti-melanoma immunity.
Previously, we found that human dendritic cells (hDCs) pulsed with a melanoma cell lysate (MCL) and stimulated with TNF-α (MCL/TNF) acquire a mature phenotype in vitro and are able to trigger tumor-specific immune responses when they are used in melanoma immunotherapy in patients. In this study, we describe that MCL/TNF induces gap junction (GJ)-mediated intercellular communications and promotes melanoma Ag transfer between ex vivo produced hDCs from melanoma patients. hDCs also exhibit increased expression of the GJ-related protein connexin 43, which contributes to GJ plaque formation after MCL/TNF stimulation. The addition of GJ inhibitors suppresses intercellular tumor Ag transfer between hDCs, thus reducing melanoma-specific T cell activation. In summary, we demonstrate that MCL/TNF-stimulated hDCs can establish functional GJ channels that participate in melanoma Ag transfer, facilitating Ag cross-presentation and an effective dendritic cell-mediated melanoma-specific T cell response. These results suggest that GJs formed between hDCs used in cancer vaccination protocols could be essentials for the establishment of a more efficient antitumor response.
Gap junction (GJ) mediate intercellular communication through linked hemichannels from each of two adjacent cells. Using human and mouse models we show that connexin 43 (Cx43), the main GJ protein in the immune system, was recruited to the immunological synapse during T cell priming as both GJs and stand-alone hemichannels. Cx43 accumulation at the synapse was antigen-specific and time-dependent, and required an intact actin cytoskeleton. Fluorescence recovery after photobleaching and Cx43-specific inhibitors were used to prove that intercellular communication between T cells and DCs is bidirectional and specifically mediated by Cx43. Moreover, this intercellular crosstalk contributed to T cell activation as silencing of Cx43 with an antisense or inhibition of GJ docking impaired intracellular Ca2+ responses and cytokine release by T cells. These findings identify Cx43 as an important functional component of the immunological synapse and reveal a crucial role for GJs and hemichannels as coordinators of the DC-T cell signaling machinery that regulates T cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.