Metasurfaces consisting of nanoscale structures are underpinning new physical principles for the creation and shaping of quantum states of light. Multiphoton states that are entangled in spatial or angular domains are an essential resource for many quantum applications; however, their production traditionally relies on bulky nonlinear crystals. We predict and demonstrate experimentally the generation of spatially entangled photon pairs through spontaneous parametric down-conversion from a metasurface incorporating a nonlinear thin film of lithium niobate covered by a silica meta-grating. We measure the correlations of photon pairs and identify their spatial antibunching through violation of the classical Cauchy-Schwarz inequality, witnessing the presence of multimode entanglement. Simultaneously, the photon-pair rate is strongly enhanced by 450 times as compared to unpatterned films because of high-quality-factor resonances. These results pave the way to miniaturization of various quantum devices by incorporating ultrathin metasurfaces functioning as room temperature sources of quantum-entangled photons.
High-index III–V semiconductor nanoantennas have gained great attention for enhanced nonlinear light–matter interactions, in the past few years. However, the complexity of nonlinear emission profiles imposes severe constraints on practical applications, such as in optical communications and integrated optoelectronic devices. These complexities include the lack of unidirectional nonlinear emission and the severe challenges in switching between forward and backward emissions, due to the structure of the susceptibility tensor of the III–V nanoantennas. Here, we propose a solution to both issues via engineering the nonlinear tensor of the nanoantennas. The special nonlinear tensorial properties of zinc-blende material can be used to engineer the nonlinear characteristics via growing the nanoantennas along different crystalline orientations. Based on the nonlinear multipolar effect, we have designed and fabricated (110)-grown GaAs nanoantennas, with engineered tensorial properties, embedded in a transparent low-index material. Our technique provides an approach not only for unidirectional second-harmonic generation (SHG) forward or backward emission but also for switching from one to another. Importantly, switching the SHG emission directionality is obtained only by rotating the polarization of the incident light, without the need for physical variation of the antennas or the environment. This characteristic is an advantage, as compared to other nonlinear nanoantennas, including (100)- and (111)-grown III–V counterparts or silicon and germanium nanoantennas. Indeed, (110)-GaAs nanoantennas allow for engineering the nonlinear nanophotonic systems including nonlinear “Huygens metasurfaces” and offer exciting opportunities for various nonlinear nanophotonics technologies, such as nanoscale light routing and light sources, as well as multifunctional flat optical elements.
Tailoring optically resonant features in dielectric metasurfaces unveils a robust scheme to control electromagnetic near fields of light and thus to boost the nanoscale nonlinear light-matter interactions. Membrane metasurfaces offer unique possibilities for supporting multipolar resonances and meanwhile maintaining high mode volume for enhancing nonlinear frequency conversion. Here we design a silicon membrane metasurface consisting of dimer airy holes, as a versatile platform for generating four-wave mixing (FWM). We show that such a metasurface exhibits a multi-resonant feature, including a quasi bound state in the continuum (BIC) generated by the collective toroidal dipole mode excited in the designed subdiffractive periodic system. We show that via employing the BIC mode in the short-wave infrared (SWIR), together with other resonant enhanced electric near fields in near-infrared (NIR) region, simultaneously, one can convert invisible SWIR light to visible light radiation with high efficiency, via FWM. We experimentally demonstrated a significant four-wave mixing emission enhancement from our metasurface, which leads to a conversion efficiency of 1.2×10-6 using pump and signal beam peak intensities as low as 0.24 GW/cm-2 and 0.14 GW/cm-2, respectively. Our results open new routes for enhancing nonlinear efficiencies for up-conversion processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.