Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water ContentTemperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations N ice .An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets -liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low-and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in situ–remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas, and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations. In spring 2014, HALO performed 16 flights above Europe with a focus on anthropogenic contrail cirrus and midlatitude cirrus induced by frontal systems including warm conveyor belts and other dynamical regimes (jet streams, mountain waves, and convection). Highlights from ML-CIRRUS include 1) new observations of microphysical and radiative cirrus properties and their variability in meteorological regimes typical for midlatitudes, 2) insights into occurrence of in situ–formed and lifted liquid-origin cirrus, 3) validation of cloud forecasts and satellite products, 4) assessment of contrail predictability, and 5) direct observations of contrail cirrus and their distinction from natural cirrus. Hence, ML-CIRRUS provides a comprehensive dataset on cirrus in the densely populated European midlatitudes with the scope to enhance our understanding of cirrus clouds and their role for climate and weather
A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.
Abstract. In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40μm were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2μm in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2μm in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by sedimentation of large HNO3-containing particles, generally considered to be NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Answering these would improve the numerical simulation of PSC microphysical processes like cloud particle formation, growth and denitrification, which is necessary for better predictions of future polar ozone losses, especially under changing global climate conditions. Generally, it seems that the occurrence of large NAT particles – sometimes termed "NAT rocks" – are a regular feature of synoptic-scale PSCs in the Arctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.