ObjectiveTo develop and externally validate a predictive model for detection of significant prostate cancer.
Patients and MethodsDevelopment of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate-specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with >5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling.
ResultsIn all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P < 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer.
ConclusionsIndividualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of overdetection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed.
Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain etiology, including whether it genuinely arises at the ovary or is metastatic disease from other organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic disease are poorly defined. We perform genetic analysis of MOC across all histological grades, including benign and borderline mucinous ovarian tumors, and compare these to tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct from tumors from other sites and supports a progressive model of evolution from borderline precursors to high-grade invasive MOC. Key drivers of progression identified are
TP53
mutation and copy number aberrations, including a notable amplicon on 9p13. High copy number aberration burden is associated with worse prognosis in MOC. Our data conclusively demonstrate that MOC arise from benign and borderline precursors at the ovary and are not extra-ovarian metastases.
Purpose
To evaluate in a multi-institutional study whether radiomic features useful for prostate cancer (PCa) detection from 3 Tesla (T) multi-parametric MRI (mpMRI) in the transition zone (TZ) differ from those in the peripheral zone (PZ).
Materials and Methods
3T mpMRI, including T2-weighted (T2w), apparent diffusion coefficient (ADC) maps, and dynamic contrast-enhanced MRI (DCE-MRI), were retrospectively obtained from 80 patients at three institutions. This study was approved by the institutional review board of each participating institution. First-order statistical, co-occurrence, and wavelet features were extracted from T2w MRI and ADC maps, and contrast kinetic features were extracted from DCE-MRI. Feature selection was performed to identify ten features for PCa detection in the TZ and PZ, respectively. Two logistic regression classifiers used these features to detect PCa and were evaluated by area under the receiver-operating characteristic curve (AUC). Classifier performance was compared with a zone-ignorant classifier.
Results
Radiomic features that were identified as useful for PCa detection differed between TZ and PZ. When classification was performed on a per-voxel basis, a PZ-specific classifier detected PZ tumors on an independent test set with significantly higher accuracy (AUC = 0.61-0.71) than a zone-ignorant classifier trained to detect cancer throughout the entire prostate (p<0.05). When classifiers were evaluated on MRI data from multiple institutions, statistically similar AUC values (p > 0.14) were obtained for all institutions.
Conclusions
A zone-aware classifier significantly improves the accuracy of cancer detection in the PZ.
Multiparametric magnetic resonance imaging reported by expert radiologists achieved an excellent negative predictive value and a moderate positive predictive value for significant prostate cancer at 1.5 and 3.0 Tesla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.