Introduction: Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. Methods: We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. Results: In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p < .05). After 1 week, the greatest percentage reductions in biomarkers levels were observed for metabolites of 1,3-butadiene, benzene, and acrylonitrile. Total NNAL, a metabolite of NNK, declined by 57% and 64% after 1 and 2 weeks, respectively, while 3-hydroxyfluorene levels declined by 46% at week 1, and 34% at week 2. Conclusions: After switching from tobacco to e-cigarettes, nicotine exposure remains unchanged, while exposure to selected carcinogens and toxicants is substantially reduced. Implications: To our knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device.
Background Smoking tobacco preparations in a water pipe (hookah) is widespread in many places of the world and is perceived by many as relatively safe. We investigated biomarkers of toxicant exposure with water pipe compared to cigarette smoking. Methods We conducted a cross-over study to assess daily nicotine and carcinogen exposure with water pipe and cigarette smoking in 13 people who were experienced in using both products. Results While smoking an average of 3 water pipe sessions compared to smoking 11 cigarettes per day, water pipe use was associated with a significantly lower intake of nicotine, greater exposure to carbon monoxide and a different pattern of carcinogen exposure compared to cigarette smoking, with greater exposure to benzene and high molecular weight PAHs, but less exposure to tobacco-specific nitrosamines, 1,3-butadiene and acrolein, acrylonitrile, propylene oxide, ethylene oxide, and low molecular weight PAHs. Conclusions A different pattern of carcinogen exposure might result in a different cancer risk profile between cigarette and water pipe smoking. Of particular concern is the risk of leukemia related to high levels of benzene exposure with water pipe use. Impact Smoking tobacco in water pipes has gained popularity in the United States and around the world. Many believe that water pipe smoking is not addictive and less harmful than cigarette smoking. We provide data on toxicant exposure that will help guide regulation and public education regarding water pipe health risk.
Background Smoking tobacco preparations in a waterpipe (hookah) is widespread in many places of the world, including the US, where it is especially popular among young people. Many perceive waterpipe smoking to be less hazardous than cigarette smoking. We studied systemic absorption of nicotine, carbon monoxide, and carcinogens from one waterpipe smoking session. Methods Sixteen subjects smoked a waterpipe on a clinical research ward. Expired carbon monoxide and carboxyhemoglobin were measured, plasma samples were analyzed for nicotine concentrations, and urine samples were analyzed for the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanol (NNAL) and polycyclic aromatic hydrocarbon (PAH) metabolite biomarker concentrations. Results We found substantial increases in plasma nicotine concentrations, comparable to cigarette smoking, and increases in carbon monoxide levels that are much higher than is typically observed from cigarette smoking, as previously published. Urinary excretion of NNAL and PAH biomarkers increased significantly following waterpipe smoking. Conclusions Absorption of nicotine in amounts comparable to cigarette smoking indicates a potential for addiction, and absorption of significant amounts of carcinogens raises concerns of cancer risk in people who smoke tobacco products in waterpipes. Impact Our data contributes to an understanding of the health impact of waterpipe use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.