Byrsonima is the third largest genus (about 200 species) in the Malpighiaceae family, and one of the most common in Brazilian savannas. However, there is no molecular phylogeny available for the genus and taxonomic uncertainties at the generic and family level still remain. Herein, we sequenced the complete chloroplast genome of B. coccolobifolia and B. crassifolia, the first ones described for Malpighiaceae, and performed comparative analyses with sequences previously published for other families in the order Malpighiales. The chloroplast genomes assembled had a similar structure, gene content and organization, even when compared with species from other families. Chloroplast genomes ranged between 160,212 bp in B. crassifolia and 160,329 bp in B. coccolobifolia, both containing 115 genes (four ribosomal RNA genes, 28 tRNA genes and 83 protein-coding genes). We also identified sequences with high divergence that might be informative for phylogenetic inferences in the Malpighiales order, Malpighiaceae family and within the genus Byrsonima. The phylogenetic reconstruction of Malpighiales with these regions highlighted their utility for phylogenetic studies. The comparative analyses among species in Malpighiales provided insights into the chloroplast genome evolution in this order, including the presence/absence of three genes (infA, rpl32 and rps16) and two pseudogenes (ycf1 and rps19).
The subdivision of the geographic distribution of H. stigonocarpa populations into three genetically differentiated groups can be associated with Quaternary climatic changes. The data suggest that during glacial times H. stigonocarpa populations became extinct in most parts of the southern present-day cerrado area. Milder climatic conditions in the north and eastern portions of the cerrado resulted in maintenance of populations in these regions. Thus it is inferred that the most southern part of the present-day cerrado was re-colonized by different lineages from northern parts of this biome, after postglacial climate amelioration.
Plathymenia reticulata is a tropical tree native to the Brazilian Cerrado, one of the most important and endangered ecosystems in Brazil. This species presents high-quality wood and potential for recovery of degraded areas. Despite its importance, almost nothing is known about its genetic or ecological features. Random amplified polymorphic DNA (RAPD) markers were used to investigate the genetic diversity and structure of six natural populations of P. reticulata. DNAs from 117 adult individuals were amplified with 10 random primers and Shannon's index and amova were used to evaluate the levels of genetic diversity within and among populations. Through 72 markers, 70.8% of which were polymorphic, it was possible to obtain 117 unique RAPD phenotypes. The levels of genetic variability found in the six populations of P. reticulata were considerable and most of the genetic variation was found between individuals within populations, although pairwise PH(ST) values indicated significant divergence between populations. The among-population component accounted for, respectively, 12.3% and 16% of the genetic variation, according to amova and Shannon's index. These results were compared with other genetic studies on plant species and such a level of differentiation among populations corresponds to that which has usually been observed for outcrossing plants. The importance of maintenance of the P. reticulata populations and implications of the analysis of adult individuals, considering the longevity of this species and the relatively recent Cerrado fragmentation, are discussed.
Little is known about past vegetation dynamics in Eastern Tropical South America (ETSA). Here we describe patterns of chloroplast (cp) DNA variation in Plathymenia reticulata, a widespread tree in the ETSA Atlantic Forest and Cerrado biomes, but not found in the xeromorphic Caatinga. Forty one populations, comprising 220 individuals, were analysed by sequencing the trnS-trnG and trnL-trnL-trnF cpDNA regions. Combined, they resulted in 18 geographically structured haplotypes. The central region of the sampling area, comprising Minas Gerais and Goiás Brazilian states, is a centre of genetic diversity and probably the most longstanding area of the distribution range of the species. In contrast, populations from northeastern Brazil and the southern Cerrados showed very low diversity levels, almost exclusively with common haplotypes which are also found in the central region. Coupled with a long-branched star-like network, these patterns suggest a recent range expansion of P. reticulata to those regions from central region sources. The recent origin of the species (in the early Pleistocene) or the extinction of some populations due to drier and cooler climate during the last glacial maximum could have been responsible for that phylogeographic pattern. The populations from northeastern Brazil originated from two colonization routes, one eastern (Atlantic) and one western (inland). Due to its high diversity and complex landscape, the central region, especially central-north Minas Gerais (between 15 degrees -18 degrees S and 42 degrees -46 degrees W), should be given the highest priority for conservation.
The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world's most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (F ST ¼ 0.62, Po0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000-780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.