SummaryBackgroundUnderweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults.MethodsWe pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5–19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5–19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity).FindingsRegional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (−0·01 kg/m2 per decade; 95% credible interval −0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69–1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64–1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (−0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls, and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7–29·6) among girls and 30·7% (23·5–38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44–117) million girls and 117 (70–178) million boys wor...
SummaryBackgroundRaised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher.MethodsFor this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure.FindingsWe pooled 1479 studies that had measured the blood pressures of 19·1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127·0 mm Hg (95% credible interval 125·7–128·3) in men and 122·3 mm Hg (121·0–123·6) in women; age-standardised mean diastolic blood pressure was 78·7 mm Hg (77·9–79·5) for men and 76·7 mm Hg (75·9–77·6) for women. Global age-standardised prevalence of raised blood pressure was 24·1% (21·4–27·1) in men and 20·1% (17·8–22·5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence.InterpretationDuring the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe.FundingWellcome Trust.
ObjectiveEstimated fetal weight (EFW) and fetal biometry are complementary measures used to screen for fetal growth disturbances. Our aim was to provide international EFW standards to complement the INTERGROWTH‐21st Fetal Growth Standards that are available for use worldwide.MethodsWomen with an accurate gestational‐age assessment, who were enrolled in the prospective, international, multicenter, population‐based Fetal Growth Longitudinal Study (FGLS) and INTERBIO‐21st Fetal Study (FS), two components of the INTERGROWTH‐21st Project, had ultrasound scans every 5 weeks from 9–14 weeks' until 40 weeks' gestation. At each visit, measurements of fetal head circumference (HC), biparietal diameter, occipitofrontal diameter, abdominal circumference (AC) and femur length (FL) were obtained blindly by dedicated research sonographers using standardized methods and identical ultrasound machines. Birth weight was measured within 12 h of delivery by dedicated research anthropometrists using standardized methods and identical electronic scales. Live babies without any congenital abnormality, who were born within 14 days of the last ultrasound scan, were selected for inclusion. As most births occurred at around 40 weeks' gestation, we constructed a bootstrap model selection and estimation procedure based on resampling of the complete dataset under an approximately uniform distribution of birth weight, thus enriching the sample size at extremes of fetal sizes, to achieve consistent estimates across the full range of fetal weight. We constructed reference centiles using second‐degree fractional polynomial models.ResultsOf the overall population, 2404 babies were born within 14 days of the last ultrasound scan. Mean time between the last scan and birth was 7.7 (range, 0–14) days and was uniformly distributed. Birth weight was best estimated as a function of AC and HC (without FL) as log(EFW) = 5.084820 − 54.06633 × (AC/100)3 − 95.80076 × (AC/100)3 × log(AC/100) + 3.136370 × (HC/100), where EFW is in g and AC and HC are in cm. All other measures, gestational age, symphysis–fundus height, amniotic fluid indices and interactions between biometric measures and gestational age, were not retained in the selection process because they did not improve the prediction of EFW. Applying the formula to FGLS biometric data (n = 4231) enabled gestational age‐specific EFW tables to be constructed. At term, the EFW centiles matched those of the INTERGROWTH‐21st Newborn Size Standards but, at < 37 weeks' gestation, the EFW centiles were, as expected, higher than those of babies born preterm. Comparing EFW cross‐sectional values with the INTERGROWTH‐21st Preterm Postnatal Growth Standards confirmed that preterm postnatal growth is a different biological process from intrauterine growth.ConclusionsWe provide an assessment of EFW, as an adjunct to routine ultrasound biometry, from 22 to 40 weeks' gestation. However, we strongly encourage clinicians to evaluate fetal growth using separate biometric measures such as HC and AC, as well as EFW, to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.