Arabidopsis thaliana is a long established model species for plant molecular biology, genetics and genomics, and studies of A. thaliana gene function provide the basis for formulating hypotheses and designing experiments involving other plants, including economically important species. A comprehensive understanding of the A. thaliana genome and a detailed and accurate understanding of the expression of its associated genes is therefore of great importance for both fundamental research and practical applications. Such goal is reliant on the development of new genetic and genomic resources, involving new methods of data acquisition and analysis. We present here the genome-wide analysis of A. thaliana gene expression profiles across different organs and developmental stages using high-throughput transcriptome sequencing. The expression of 25 706 protein-coding genes, as well as their stability and their spatiotemporal specificity, was assessed in 79 organs and developmental stages. A search for alternative splicing events identified 37 873 previously unreported splice junctions, approximately 30% of them occurred in intergenic regions. These potentially represent novel spliced genes that are not included in the TAIR10 database. These data are housed in an open-access web-based database, TraVA (Transcriptome Variation Analysis, http://travadb.org/), which allows visualization and analysis of gene expression profiles and differential gene expression between organs and developmental stages.
Fitness landscapes1,2, depictions of how genotypes manifest at the phenotypic level, form the basis for our understanding of many areas of biology2–7 yet their properties remain elusive. Studies addressing this issue often consider specific genes and their function as proxy for fitness2,4, experimentally assessing the impact on function of single mutations and their combinations in a specific sequence2,5,8–15 or in different sequences2,3,5,16–18. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here, we chart an extensive region of the local fitness landscape of the green fluorescent protein from Aequorea victoria (avGFP) by measuring the native function, fluorescence, of tens of thousands of derivative genotypes of avGFP. We find that its fitness landscape is narrow, with half of genotypes with two mutations showing reduced fluorescence and half of genotypes with five mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations arising mostly through the cumulative impact of slightly deleterious mutations causing a threshold-like decrease of protein stability and concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for a number of fields including molecular evolution, population genetics and protein design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.