Background: Tideglusib is a GSK-3 inhibitor currently undergoing clinical trials for Alzheimer disease and progressive supranuclear palsy. Results: Removal of unbound compound does not recover the enzyme activity, and the dissociation rate constant is close to zero. The protein shows a low turnover rate in neurons. Conclusion: Tideglusib is an irreversible inhibitor of GSK-3. Significance: The irreversibility and the long enzyme half-life may possess interesting pharmacodynamic implications.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as new potent drugs that may simultaneously alleviate cognitive deficits and behave as disease-modifying agents by inhibiting the beta-amyloid (A beta) peptide aggregation through binding to both catalytic and peripheral sites of the enzyme. Particularly, compounds 5 and 6 emerged as the most potent heterodimers reported so far, displaying IC50 values for AChE inhibition of 20 and 60 pM, respectively. More importantly, these dual AChE inhibitors inhibit the AChE-induced A beta peptide aggregation with IC50 values 1 order of magnitude lower than that of propidium, thus being the most potent derivatives with this activity reported up to date. We therefore conclude that these compounds are very promising disease-modifying agents for the treatment of Alzheimer's disease (AD).
Manzamine A and related derivatives isolated from a common Indonesian sponge, Acanthostrongylophora, have been identified as a new class of GSK-3beta inhibitors. The semisynthesis of new analogues and the first structure-activity relationship studies with GSK-3beta are also reported. Moreover, manzamine A proved to be effective in decreasing tau hyperphosphorylation in human neuroblastoma cell lines, a demonstration of its ability to enter cells and interfere with tau pathology. Inhibition studies of manzamine A against a selected panel of five different kinases related to GSK-3beta, specifically CDK-1, PKA, CDK-5, MAPK, and GSK-3alpha, show the specific inhibition of manzamine A on GSK-3beta and CDK-5, the two kinases involved in tau pathological hyperphosphorylation. These results suggest that manzamine A constitutes a promising scaffold from which more potent and selective GSK-3 inhibitors could be designed as potential therapeutic agents for Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.