Accurate species identification often relies on public repositories to compare the barcode sequences of the investigated individual(s) with taxonomically assigned sequences. However, the accuracy of identifications in public repositories is often questionable, and the names originally given are rarely updated. For instance, species of the Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) are frequently misidentified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding unreliable. We DNA barcoded 295 individual distromatic foliose strains of Ulva from the North‐East Atlantic for three loci (rbcL, tufA, ITS1). Seven distinct species were found, and we compared our results with all worldwide Ulva spp. sequences present in the NCBI database for the three barcodes rbcL, tufA and the ITS1. Our results demonstrate a large degree of species misidentification, where we estimate that 24%–32% of the entries pertaining to foliose species are misannotated and provide an exhaustive list of NCBI sequences reannotations. An analysis of the global distribution of registered samples from foliose species also indicates possible geographical isolation for some species, and the absence of U. lactuca from Northern Europe. We extended our analytical framework to three other genera, Fucus, Porphyra and Pyropia and also identified erroneously labelled accessions and possibly new synonymies, albeit less than for Ulva spp. Altogether, exhaustive taxonomic clarification by aggregation of a library of barcode sequences highlights misannotations and delivers an improved representation of species diversity and distribution.
Nitrated phospholipids have recently been detected in vitro and in vivo and associated with beneficial health effects. They were identified and quantified in biological samples by lipidomics methodologies using liquid chromatography-collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) acquired with the linear ion trap mass spectrometer. Only a few studies have used higher-energy collision dissociation (HCD)-MS/MS in high-resolution Orbitraps to characterize nitrated phosphatidylserines and nitrated cardiolipins, highlighting the marked differences in the fragmentation patterns when using CID or HCD fragmentation methods. In this study, we aimed to evaluate the fragmentation of nitrated phosphatidylcholine and nitrated phosphatidylethanolamine species under HCD-MS/MS. We studied the effect of normalized collision energy (NCE) in the fragmentation pattern to identify the best acquisition conditions and reporter ions to detect nitrated phospholipids. The results showed that the intensity of the typical neutral loss of nitrous acid (HNO2) diminishes with increasing NCE, becoming non-detectable for a higher NCE. Thus, the loss of HNO2 could not be the most suitable ion/fragment for the characterization of nitrated phospholipids under HCD. In HCD-MS/MS new fragment ions were identified, corresponding to the nitrated fatty acyl chains, NO2-RCOO−, (NO2-RCOOH-H2O + H)+, and (NO2-RCOOH + H)+, suggested as potential reporter ions to detect nitrated phospholipids when using the HCD-MS/MS lipidomics analysis.
Nitrated lipids have been detected in vitro and in vivo, usually associated with a protective effect. While nitrated fatty acids have been widely studied, few studies reported the nitration and nitroxidation of the phospholipid classes phosphatidylcholine, and phosphatidylethanolamine. However, no information regarding nitrated and nitroxidized phosphatidylserine can be found in the literature. This work aims to identify and characterize the nitrated and nitroxidized derivatives of 1-palmitoyl-2-oleoyl-sn-3-glycero-phosphoserine (POPS), obtained after incubation with nitronium tetrafluoroborate, by liquid chromatography (LC) coupled to mass spectrometry (MS) and tandem MS (MS/MS). Several nitrated and nitroxidized products were identified, namely, nitro, nitroso, nitronitroso, and dinitro derivatives, as well as some nitroxidized species such as nitrosohydroxy, nitrohydroxy, and nitrohydroperoxy. The fragmentation pathways identified were structure-dependent and included the loss of HNO and HNO2 for nitroso and nitro derivatives, respectively. Combined losses of PS polar head group plus HNO or HNO2 and carboxylate anions of modified fatty acyl chain were also observed. The nitrated POPS also showed antiradical potential, demonstrated by the ability to scavenge the ABTS●+ and DPPH● radicals. Overall, this in vitro model of nitration based on LC-MS/MS provided additional insights into the nitrated and nitroxidized derivatives of PS and their fragmentation fingerprinting. This information is a valuable tool for targeted analysis of these modified PS in complex biological samples, to further explore the new clues on the antioxidant potential of nitrated POPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.