Core-shell nanoparticles of MnO|Mn3O4 with average particle sizes of 5-60 nm, composed of an antiferromagnetic (AFM) core and a ferrimagnetic (FiM) shell, have been synthesized and their magnetic properties investigated. The core-shell structure has been generated by the passivation of the MnO cores, yielding an inverted AFM-core|FiM-shell system, as opposed to the typical FM-core|AFM-shell. The exchange-coupling between AFM and FiM gives rise to an enhanced coercivity of approximately 8 kOe and a loop shift of approximately 2 kOe at 10 K, i.e., exchange bias. The coercivity and loop shift show a non-monotonic variation with the core diameter. The large coercivity and the loop shift are ascribed to the highly anisotropic Mn3O4 and size effects of the AFM (i.e., uncompensated spins, AFM domains, and size-dependent transition temperature).
The magnetic properties of maghemite (gamma-Fe2O3) cubic and spherical nanoparticles of similar sizes have been experimentally and theoretically studied. The blocking temperature, T(B), of the nanoparticles depends on their shape, with the spherical ones exhibiting larger T(B). Other low temperature properties such as saturation magnetization, coercivity, loop shift or spin canting are rather similar. The experimental effective anisotropy and the Monte Carlo simulations indicate that the different random surface anisotropy of the two morphologies combined with the low magnetocrystalline anisotropy of gamma-Fe2O3 is the origin of these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.